The notations used in the formulas are chosen as in reference 2.

We remark that, generally speaking, we are taking into account the exchange of a "swollen" photon, for which the propagation function is $d(q^2)/q^2$, the function $d(q^2)$ being included in the vertex functions $f_1(q^2)$ and $f_2(q^2)$. On the basis of experiments on scattering it is in general impossible to distinguish a change of the vertex operator from a change of the propagation function of the photon.

It must also be noted that if new forces of a vector character (transferred by vector mesons) come into play at small distances, the formulas given here remain valid if we replace the photon propagation function $-1/q^2$ by the propagation function of the meson.

The well known Möller formula is obtained from Eq. (2) if we set $f_2 = 0$, $f_1 = 1$. All the radiative and mesonic corrections are included in the functions $f_1(q^2)$ and $f_2(q^2)$ (when we consider the exchange of one photon, and just in this case it makes sense to speak of the form-factors f_1 and f_2) and can be calculated. A deviation from the Möller formula (with account taken of the corrections mentioned above and of the exchange of a larger number of photons) would indicate the inapplicability of quantum electrodynamics at small distances, and the experimental determination of the functions $f_1(q^2)$ and $f_2(q^2)$ will give information about the distributions of charge and current in the electron.

¹W. K. H. Panofsky, Report at the Ninth International Conference on High-Energy Physics, Kiev, 1959.

² J. M. Jauch and F. Rohrlich, <u>The Theory of</u> Photons and Electrons, Cambridge, Mass., 1955.

Translated by W. H. Furry 304

MUTUAL SOLUBILITY OF HYDROGEN AND DEUTERIUM AT 4.2°K

R. F. BULATOVA, V. S. KOGAN, and V. G. LAZAREV

Physico-technical Institute, Academy of Sciences, Ukrainian S.S.R.

Submitted to JETP editor July 21, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 1492-1493 (November, 1959)

WE published previously¹ the general outlines of the $H_2 - D_2$ phase diagram. The two-phase region for the $H_2 + D_2$ mixture was roughly mapped out at helium temperatures for that concentration range over which the x-ray lines of both hydrogen and deuterium appeared simultaneously. From the x-ray diagrams and data on the structure of the pure isotopes,² one can determine the limits of solubility of hydrogen in deuterium and of deuterium in hydrogen at 4.2°K.

From this data on the pure isotopes it follows that a molecule occupies a volume of 38 A^3 in the H₂ lattice, and the volume in the D₂ lattice is 32.5 A^3 . The figure shows the values of the volume v per molecule in the lattices of different solid mixtures. These results show that the limit The volume corresponding to one molecule; O - in the hydrogen lattice and $\Box - in$ the deuterium lattice, as a function of composition.

of solubility of hydrogen in deuterium is 10% and of deuterium in hydrogen is 21%. It is interesting to note that the volumes corresponding to one molecule in both limiting mixtures are roughly the same ($\sim 35 \,\text{A}^3$), and are close to the arithmetic mean of the volumes per molecule in the lattices of the pure isotopes.

Translated by R. Berman 305

¹Kogan, Lazarev, and Bulatova, JETP **34**, 238 (1958), Soviet Phys. JETP **7**, 165 (1958).

²Kogan, Lazarev, and Bulatova, JETP **37**, 678 (1959), Soviet Phys. JETP **10**, 485 (1960).