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matrices {3/J. are represented in the following 
form: 

W' = lfL X IX(fll (no summation!) (8) 

Here 'Y!J. are the Dirac matrices, and the matrices 
O!W> are given in reference 2. Although expression 
(8) has on first glance the same appearance as (7), 
there is an essential difference between the two 
expressions. Neither the matrices O!W> nor their 
products satisfy equations of the type (5), 

Only in the case of anomalous equations for par
ticles with a unique rest mass can the {3/J. in (8) be 
represented in the form (7). 

We introduce now a concrete example of the {3/J. 

matrices (8) for particles with spin ! and with two 
rest masses. The matrix {30 is equal here to 

21 

v21 '1 '• '" 
V2l - vlJ,;r1 - vlJ.r. - Vlhra 

~o =loX '1 - Vlhr1 k1 

- rz Vlhrz k, 

'• - Vlfzrs k. 

(9) 

where the coefficients are given by the expressions 

ri =% ki (k1- '-1) (k1- '-•) I (ka- k1) (k1- k2), 
ri = - 'Ia k~ (k2- '-1) (k2- 1- 2) I (k1- k2) (k2- k3), 

r; = 'fa k; (ka- '-1) (k3- '-•) / (k3- k1) (k2- k3), 

ki "'o, i = 1, 2, 3, l = o, At> kt > k2 > k3 > A2, 

At/2 > A2, At + A2 = k1 + k2 + k3• The parameters 
At and A2 determine the rest masses of the par
ticles and must be taken as given, so that only two 
of the three parameters ki are independent. 

With the aid of the {30 matrices and the gener
ators lot• 112 , 123• 

Iol =loll X diag {-11., •;., _112, _112, - 112, _1/2}, 

1/• vih 
v!h 

Vlfz 1/z 
- 1/z 

- lj2 

• - 1/z 

/23 = l2l3 X diag e/2, - 1/ 2, - 1/ 2 , - 112, - 1 j 2, - 112}, 

we can determine the remaining matrices f3k 
( k = 1, 2, 3) and the other generators 102 , 103 , 131 • 

By means of a long, but not difficult calculation, 
one can convince oneself that the only matrix com
muting with all the matrices of the anomalous equa
tions given here is the unit matrix. Therefore it 
follows that the corresponding {3/J. matrices are 
not fully reducible and that the anomalous equa
tions for particles with several masses do not 
decouple. 

Anomalous equations do not represent the only 
equations contradicting solution (7). If l "' 0 is 
chosen in matrix (9), then by making the corre
sponding choice for the coefficients of the matrix 
one can satisfy all the physical conditions and con
struct irreducible equations for particles having 
K1 in a spin % state and masses K2 and K3 in a 
spin 1/ 2 state. Several similar examples could be 
given. 

All Shelepin's work is based on the assumption 
that the solution of the form (7) to Eq. (5) has a 
unique character. Since this assumption is untrue, 
the method considered in reference 1 of construct
ing an arbitrary algebra U ( {3) by using direct 
products of the Dirac algebras is not general enough. 

t L.A. Shelepin, JETP 34, 1574 (1958), Soviet 
Phys. JETP 7, 1085 (1958). 

2 I. Ulehla, JETP 33, 473 (1957), Soviet Phys. 
JETP 6, 369 (1958). 

Translated by W. Ramsay 
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INELASTIC N-N collisions can be separated, 
using the impact parameter as criterion, into those 
involving collisions of the central regions of the 
nucleons and those in which the periphery of one 
nucleon collides with the central portion of the 
other.t An optical-model analysis of N-N colli
sions in the energy range E = 1 - 9 Bev indicates 
that one type of collision takes over from the other 
at an impact parameter of r 0 ,...., 0.6 x 10-t3 em. In 
the description of collisions of the central parts, 
in which most of the energy of the nucleons lies, 
the statistical theory of multiple production can 
be employed (see references 2 and 3 ) . 

In Fig. 1 the theoretical results, calculated from 
statistical theory of multiple production, are given 
by the dashed line, and the experimental histogram 
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FIG. 1 

for the angular distribution of charged particles 
produced in N-N collisions* (in relative units ) , 
by the solid curve. 

In the table are shown the ratios TJ of the ex
perimental number of particles emitted at small 
angles in p-p collisions to the number of particles 
calculated from the statistical theory. 

Angular J 
interval , ·n 

in degr_e_e_s__,_i __ _ 

0-3 11.9±. 0.3 
0-.5 1.6+0.2 
0-10 [1.2±0.1 

In Fig. 2 are given the ratios of the observed 
number of stars with n prongs ( n = 1, 3, 5 for 
p-n and n = 2, 4, and 6 for p-p collisions) to 
the theoretical number, that is, N~xp /Nhheoret. 
The mean theoretical multiplicities n<PP> = 3.5 
and n<pn> = 3.2 exceed the experimental values5 

n<PP> = 3.22 ± 0.12 and n<pn> = 2.62 ± 0.13 only 
slightly. 
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FIG. 2 

From the figures and the table it follows that 
the theoretical and experimental values differ in 
the region of small angles and in events with a 
low multiplicity of particles. 

Since the experimental angular distributions 
averaged over large angular intervals (~ cos e 

= 0.1, see Fig. 1 ) , the mean number of particles 
produced, and also the mean energy losst follow 
the predictions of the statistical theory, one can 
conclude that the main proportion of the N-N 
collisions have to do with collisions between the 
central regions of the nucleons. 

In order to understand the deviations, we con
sider periphery collisions. For a first estimate, 
we employ the Weizsacker-Williams method. 1 The 
cross section for periphery collisions is 

Clp = 2 ~:InN (s) q (s) dE~ : 2 • 1 o-27 cm2 ~ 0.2:J"N' 

where {3 >::J 1 is the nucleon velocity, U1rN >::J 30 
x 10-27 cm2 is the total cross section for 1r-N 
interactions,t q ( e:) is the energy spectrum of 
the periphery mesons, moving together with the 
nucleon. 

The mean number of charged particles pro
duced in the collision of a periphery meson of the 
incident nucleon with the other nucleon can be ob
tained either from the experimental data on 1r-N 
interactions for E = 1 - 5 Bev, or from theoret
ical calculations using the statistical theory (the 
results are in agreement). The mean multiplicity 
in periphery collisions turned out to be equal to 
n<pp> = 3.3 and n<pn> = 3.1. 

If we assume that the nucleon losing a periphery 
meson remains in the excited state T = J = % (on 
account of the relativistic contraction of time, the 
lifetime of such an isobar is T ~ 15 T 0 , where To 

is the time of nuclear collision), then the number 
of charged particles emitted forwards (in the 
c.m.s.) in p-n collisions exceeds the number of 
charged particles emitted backwards by a factor 
of about 1.5. This asymmetry comes completely 
from the protons; the 1r mesons are emitted 
symmetrically relative to e = 1r/2. In p-p colli
sions the angular distribution in the c.m.s. is 
symmetrical relative to e = 1r/2. In both p-n and 
p-p collisions, the angular distributions are aniso
tropic in the c.m.s. Since the particles produced 
in central collisions are emitted isotropically (in 
the c.m.s. ), then in the small-angle region the 
charge asymmetry may result completely from 
periphery collisions. 

We thank D. I. Blokhintsev and V. I. Veksler 
for discussion of the present work, and N. P. 
Bogachev for discussion of the experimental re
sults of references 4 and 5. 

*The experimental curve is the histogram averaged for p-p 
and p-n collisions, taken from Ref. 4. 

t(AE/E)exp = (40 ± 10)%; (AE/E) = (40-50)% (see ref. 6). 
+In the calculation of q( E) we took the value of the meson 

charge to be f' /he = 0.08 and the radius of the central region 
of the nucleon to be r0 = 0.6 x l0-13 em. 
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FoLLOWING Keesom, 7 the interpretation of ex
perimental data on the specific heat anomaly1 •2 and 
nuclear resonance has been based3- 6 so far on a 
close-packed hexagonal lattice structure for crys
talline hydrogen. Recently Lazarev8 and co-workers 
have found an error in this previous work and showed 
that the x-ray lines obtained could be explained either 
by a hexagonal lattice, deviating a little from close
packing (a = 3. 7, c = 6.42 ) , or by a tetragonal lat
tice (a= 4.5, c = 3.68 ). It was therefore necessary 
to determine the degree of agreement of the experi
mental data on the specific heat anomaly with the 
new crystal lattices ascribed to hydrogen. Since 
the structure is not yet resolved unambiguously, it 
is no less important to calculate the anisotropy of 

nuclear resonance in a hydrogen single crystal* and 
to find out whether the structure can be elucidated 
by the nuclear resonance method. 

1. From Hill and Ricketson's experimental data, 1 

Nakamura2 found that within a certain temperature 
range the dependence of the anomalous specific heat, 
Cv, on the temperature T and concentration p is 
given by 

(1) 

where 01 = 1.1 and f3 = 15.7. He also obtained a 
similar formula theoretically, and found the coeffi
cients 01 and f3 to be very sensitive to the crystal 
structure. For a close-packed hexagonal lattice 
Nakamura obtained 01 strictly equal to zero, with 
f3 = 20 to the first approximation and 18 to the sec
ond. For the newly determined tetragonal lattice 
we calculated for 01 and f3 values in better agree
ment with experiment: 01 = 0.3 and f3 = 18 to the 
first approximation and 16 to the second. 

2. In Van Vleck's formula9 for the second mo
ment of a resonance line due to intermolecular t 
dipole-dipole interaction, the crystal structure is 
taken into account through the sum 

2J r/k6 (3 cos 2 61k- 1)2 , 

k 

where rik is the distance between the i -th and 

(2) 

k-th molecules, and eik is the angle between the 
magnetic field and the vector eik· We have calcu
lated the sum for an arbitrary magnetic field direc
tion and obtain the following expressions for tetrago
nal and hexagonal lattices: 

2J r/k6 (3 cos2 6,k- 1)2 

k 

= c-6 (9.2 + 0.88 cos 2 6 + 0.24 cos4 6), 

2J r/i,6 (3 cos2 6ik- 1)2 

k 

= a-6 (11.2- 16.4 cos2 6 + 19.7 cos4 6), 

(3) 

(4) 

where e is the angle between the field and the 
fourfold or corresponding sixfold axis. The con
siderable difference between the anisotropies for 
a tetragonal (3) and hexagonal (4) lattice can con
veniently be used to decide the structure of solid 
hydrogen. 

3. Moriya and Motizuki6 proposed a theory of 
spin-lattice relaxation in solid hydrogen. Because 
of the difficulty of the calculation, the relaxation 
time, T 1, was derived for the simplest case cor
responding to the magnetic field parallel to the six
fold axis. Since the determination of the orientation 
of a single crystal under experimental conditions 
presents considerable difficulty, we considered it 
necessary to carry through the cumbersome calcu-


