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The excitation of the first vibrational level of an even-even nucleus by charged particles with 
energies close to the height of the Coulomb barrier is considered. 

IN an earlier paper1 the author considered the ex
citation of the rotational levels of nuclei by charged 
particles with energies close to the height, B, of 
the Coulomb barrier. The excitation of the vibra
tional levels can be discussed in an entirely analo
gous fashion. If the energy of the incoming par
ticle is E ,...., B, the basic process leading to collec
tive excitations is, besides the ordinary Coulomb 
excitation, the direct nuclear interaction. Compound 
nucleus formation should play only a secondary role, 
since the compound nucleus can decay in a very great 
number of ways, out of which only one gives a con
tribution to the reaction under consideration. This 
is true especially in the case when the incoming 
particle is complex (a particle, deuteron, etc.). 

Since the internal structure of the nucleus is 
not affected by the excitation of the collective lev
els, it is natural to describe the direct interaction 
with the help of the optical model, which is modified 
in such a way as to take into account the collective 
degrees of freedom in the nucleus. This modifica
tion consists of regarding the parameters specify
ing the shape of the complex nuclear potential as 
dynamical variables in the Schrodinger equation 
for the system consisting of the target nucleus and 
the incoming particle. Thus, if the nuclear poten
tial has the form 

Vn (r) ~= Vn r,.- ~ ({),rp)J, (1) 

where 

R. = R.0 [1 + ~>''"Y1,fJ-(9, "f') J, 
A!l. 

(2) 

one conveniently chooses for these collective coor
dinates the coefficients ar..w The Hamiltonian of 
the system can then be written in the form 

ll = Ifvib (0'.)- (1i2j2m) V2 

(3) 

where a is the set of coordinates ar._11 , r = r ( r, 
(}, q;) is the radius vector of the incoming particle, 
V c ( r, a) is the non -central part of the electrostatic 

interaction leading to the Coulomb excitation, and 
Hvib (a) is the collective Hamiltonian of the nu
cleus:2 

Ifvib(!Y..) = ~ [;-B, [ O'..A!J-[ 2+ ~ C, / O'..),,L !2] (4) 
/,[J. 

We are interested in a solution of the Schrodinger 
equation 

H'¥ (r, z) == E'¥ (r, a), (5) 

which, for large r, has the form 

'¥ (r, oc) _, 'f~:fl-' (!Y..) exp {ik0r + i"ij0 In (kr- kr)} 

+ ~ r- 1 /I!1-n(9, "f') "f'~fl- (a) exp {iknr- i"'jn In knr}. (6) 
l,rL,n 

Here q;ff( a) are the wave functions of the station
ary states of the nucleus, satisfying the equation 

(7) 

The oscillatory levels of the nucleus are charac
terized by the value of the total moment I, its 
projection Jl, and the number of phonons n. The 
quantities kn and Tin in (6) are the wave number 
and the Coulomb parameter Z1 Z2e2 /tiv of the in
coming particle with energy E -En, respectively. 

In the following we shall consider only the quad
rupole (A. = 2) oscillations of even -even nuclei 
( 10 = Jlo = n0 = 0) with respect to the spherical 
equilibrium shape. Estimates show that the term 
V c ( r, a) can here be regarded as a perturbation, 
as in the usual theory of the Coulomb excitation. 

Our first task, therefore, is to solve the equa
tion 

(8) 

where the Hamiltonian H0 differs from the com
plete Hamiltonian (2) by the absence of the term 
Vc(r, a). 

We introduce the system of orthonormal func-
tions 

CDJM ~ CJM I fl.( ) y {) 
lin= 4-J lv., IM-!L 'fn 0C I,M-p. ( ,tp); (9) 

fl. 
these are the eigenfunctions of the total moment of 
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the system J, its projection M, the moment of 
the nucleus I, and the moment of the particle Z. 

The function '110 is conveniently expressed in 
a form analogous to that used in ordinary scatter
ing theory: 

r'¥0 = 114n: ~ (krt 1 i 1+1 V2l + 1 ~·~o) (r, a), (10) 

where the functions '11~0 > at r - oo have the form 

'P')0> ~ <Dg~o sin (k0r -ln:;2 + o1 -1)0 In 2k0r) 

+ ~tb%.rrn•<Df·h· exp {ikn•r- i"i)ndn2kn•r}. (11) 

If the energy of the incoming particle is close to 
the height of the Coulomb barrier, the function 
'11~0 > changes relatively slowly outside the nucleus 
for r "' R0, while it oscillates strongly inside the 
nucleus. This means that at the nuclear surface 

':¥)0> ~ iJ'Y)0>;a (kr) 

so that we can make the approximation 

':¥)0> [R (8, cp, o:)] = 0. 

(12) 

(13) 

The inequality (12) is not satisfied for certain 
resonance values of the energy; however, all these 
resonances lie above the Coulomb barrier and are 
therefore not important to us. 

Outside the range of the nuclear forces the func
tions '11?> can be expressed in the form 

'F)0l = F1 (k0r) <D~~o+ ~ b~~~.l'l'n'[Gt• (kn·r)+iFt• (kn•r)]<Df?l'n', 
l'l'n' . (14) 

where Gz' ·and Fz' are the radial Coulomb func
tions, which for large r have the asymptotic forms 

F1 - sin (kr -ln:;2 + llt- 'lin 2kr), 

0 1 - cos (kr -- Z.:.:;2 + o1 - '• ln 2kr); (15) 

the b<O> are certain unknown amplitudes. Condi
tion (13) allows us to determine these amplitudes 
without considering the solution in the internal re
gion at all. This condition can be rewritten in the 
form 
F1 (koR) <D~~o+ 2J bb%,n•n•[Gr(kn·R) 

I' l'n' 

+ ift• (kn·R)J <Df~'l'n' (8, Y• a)= 0, (16) 

where R = R ( (}, cp, a) is given by (2). Equation 
(16) must be satisfied for all values of (}, cp, a. 
The amplitudes b<O> are now found in exactly the 
same way as in the problem of the excitation of 
the rotational levels .1 

By analogous methods we obtain 

~~~L·t•n• = foto.I't'n' 

- i ~ [:~&%.rrn· lrrn"J'I'n' Fl" (kn"Rol!Gr· (kn·Ro). (17) 
I" .I" ,n" 

where 

r:~6%.rt'n' =- bi,%n·n· Ft (koRo)!Gr ~knRo). 

I J• rr to· f fln rhlo d" d Iln,J'I'n' = 'l)J'l'n' -~-- '!Jfln '" Y., 
i ]' l'n' 

fun= Ft[knR (0, :p, :t.)I/Fz (k11R 0 ); 

(18) 

(19) 

"(Iln = Gt [knR (8, f, x)](G, (knRo). (20) 

As in reference 1, we have neglected in (17) all 
integrals which differ from (19) in that f is re
placed by y. Since in all known cases the distance 
between vibrational levels is "' 1 Mev, we have 
Fz (knR0 )/Gz (knRo) « 1 for E ~ B and n > o. 
In the sum over n" in (1 7) we may therefore keep 
only the terms with n" = 0. In the following we 
shall be interested in the excitation of the first 
vibrational level ( n' = 0, I' = 2); for the corre
sponding amplitude we have 

The integrals IIZn,I'Z'n' can be calculated by 
expanding the logarithm of the function f/y in 
powers of the quantity I) a 2J.I. Y 2J.I., keeping only 
the linear term: 

(the prime denotes differentiation of the function 
with respect to its argument). Using the equations 
satisfied by the functions Fz and Gz and formulas 
(32) and (33), it is easily shown that the neglected 
terms have the order 1/1]. Substituting (22) in (19), 
we obtain 

V- i·o 
foto, oto '-~ Gto,lo; foto,zi'I = Gto,l'l O(o Zto,l'l 5;4rrCio2o; 

Xtn,l'n' = knRo [F~ (knRo)/ F t (knR0 ) 

- kn·G~· (knR0 )/kn·G i'(knRo) ], 

(23) 

1Xo =1i/V2BC, Gtn,!'n' = exp { (51X~/16n:)x~n.l'n' }. (24) 

Formulas (23), (24), and (20) solve the first part 
of the problem. 

The exact amplitude b is connected with the 
amplitude found above, b<O>, by the known relation 

bun.I'l'n' = b)~~.l'l'n' -i- b}~~,l'l'n', (25) 

(c) 2m (' nr (-)' nr(O) ( 
bun, l't'n' = - kfi" 3 I 1 Vc I I' dr diX, 26) 

where 'lit> is the Z-th component in the expan
sion of the exact wave function '11<->, analogous to 
(1 0); for large r, 'lit> consists of an incident 
plane wave and an incoming spherical wave. 

As already indicated, we regard V c as a per
turbation, and we can therefore replace the exact 
function '11~- > in (26) by >Jif- ><O>. It is easily seen 
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that we can also neglect the diverging wave in (26) 
which is due to the scattering by the nucleus. This 
leads to a small error in the total cross sections 
which is connected with the fact that the nuclear 
amplitudes b <O> decrease much faster with in
creasing l than the Coulomb amplitudes b<c>. 

Retaining in (26) .only the "incoming" waves 
and assuming for simplicity that the charge.den
sity in the nucleus is constant, we find 

b~~~.21'l =c- (6·tj5) koklR~:xo V5f4rr c;~~o Mit~. (27) 

where Mz/' is a radial matrix element defined by 
co 

Mltil~~ ko~r ~ F!'(k 1 r)r-3ft(k0r)dr. (28) 

For the total cross section for the excitation of 
the first vibrational level we now have 

where 

a6c)'I ~~ 4c: k~2 ~(2l · ;- I) J b)~l, J2 = 
II' 

cr6'2.1 = 4rrk~2 ~ (21 + I )jb6%.21'I j2, (30) 
II' 

cr6~i = 8rrk~2 ~ (21 +I) R.e[bb~~.2l'l b6%~21'I]. (31) 
II' 

Here a= Z1Z2e2/2E, ~ = 1Jo -711, and fE2 (7], 0 
is a dimensionless function known in the theory 
of Coulomb excitation (tables for this function 
can be found, for example, in the review article 
by Alder et al.3 ). 

To calculate u<n> and u<nc> it is necessary 
to know the Coulomb functions Fz ( kr) and Gz ( kr) 
near the classical turning point kr = 27]. In this 
region these functions are given with good accuracy 
by the expressions4 

F (2 )" [ 'I)+ V '1)2 + l (1+1)-kr ] 
[ -- ""(. /G v 

- I ('2·~)'/• ' 
(32) 

G _ (2 ·)'/ [ 'IJ+V'IJ'+l(l+1)-kr] 
t- rl •u 'I ' ('2'1)) • . 

(33) 

where u and v are Airy functions in the Fock 
notation. 5 These functions are related to the Bes
sel functions of order % in the following way: 

~ ;~; = V it {L,1, (-} t''•) + f,,, (-} f'l•)} t > 0, 

~ i:; = v it V-'1.(-} It 1'1•)+ J.,.(-} It I'")} t < 0 

[the upper sign refers to the function u ( t) ] . 
The important values of l in the sums (30) and 

(31) are l ~ ( 27] )2/ 3• If the incoming particle is a 

proton, a typical value of 1J is 1J ~ 3. In this case 
it is easy to carry out the summations in (30) and 
(31) immediately. To evaluate the radial matrix 
elements M[} in (31), it is convenient to use the 
approximate quasi-classical expressions for them, 
which are quite accurate for 1J > 1: 

[.1.=1-l', 

0 = 2 sin-1 [I + I (l + I) 'YJ-2]-'1•, 

where I2JJ. ( 8, ~) is a classical orbital integral 
known in the theory of Coulomb excitation.6 Tables 
of the function I2JJ. ( 8, ~) are given, for example, 
in reference 3. 

If the excitation of the nucleus is due to a par
ticles, then 11 » 1 ( 1J ~ 10) and the summation in 
(30) and (31) can be carried out analytically (with 
an accuracy up to terms of order 1/11 ) . Let us 
first consider the sum (30). It is seen from the 
expression (21) for the amplitudes bH~ that fo,r 
1J » 1 only the Clebsch-Gordan coefficient cio~o 
depends strongly on the value l' for a given 
l; in the other factors we may set l' = l. 

Since the Airy function is quite sensitive to 
changes of its argument of order unity, the root 
in (32) and (33) may be expanded in terms of pow
ers of l ( l + 1 ) /712, keeping only the linear term. 
Furthermore, we can replace the summation over 
l in (30) by an integration over the variable x 
= l(l + 1)/(27]) 4/J. We then obtain for u<n> 

00 ~ 

0 (n) = 5 (2 )''•R• 2 \ { a• (z z x) l· k1u' (x + z1) __ v' (x + z0)] 

'YJ oO(o .\ 0 ' 1 ' k 0u (x + z1) v (x + zo) 
0 

u• (x + zo) v2 (x + zo) } d 
X u 2 (x + z1)[ u 2 (x -t· z0) + a2 (z0 , z0 , x) v2 (zo + x)j X, 

where 

{ 5a'o 2[ kpu' (zp + x) v' (zn + x) ]2} 
a (z,, Zp, x) = exp 161t (knRo) knu (zp + x) - v (zn + x) 

The integrand can now be written in the form 

{ a• (z z x) v (zo~ x) u3 (zo + x) [k1u' (z1 + x) _ v' (zo + x)]2} 
0 ' h U" (z1 + x) k0u (zr + x) v (zo + x) 

x{ v~+~ } 
u3 (z0 + x)[ 1 + a2 (zo,Zo, x) v2 (zo + x) I u 2 (z0 + x) 1 

For all values of the excitation energy of the 
first vibrational level occuring in real cases, the 
first factor depends very weakly on x as com
pared to the second factor (in a typical case, 
1Jo = 10; k0R0 = 27]0 and 71 1 = 9.5, it varies by 
less than 20%, whereas the second factor changes 
by more than two orders of magnitude). This 
comes from the fact that in the considered region 
of values of the arguments, the Airy functions 
change monotonically, while the logarithmic de
rivatives u' /u and v' /v, the products v ( x) u ( x), 
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and the ratios u (x +a)/u (x +b) vary slowly (not 
exponentially) in comparison with expressions of 
the type u-2 or v/u. 

The first factor can therefore be pulled out from 
under the integral sign, with x = 0. To calculate 
the remaining integral it is convenient to change 
to a new variable of integration, t = v ( z0 + x )/ 
u ( z0 + x); by virtue of the relation u'v - uv' = 1 
we have 

The slowly varying quantity a (z0, z0, x) must be 
regarded as a constant, setting x = 0. 

As a result we obtain 

0 (n) = s; R2 (2-y:)'/, ot2 a2 (zo, z,, 0) v (zo) u3 (z0) 

2 o I 0 a2 (zo, z0, 0) u (z1) 

[ kr u' (z,) - v' (zo) ]21n [ 1 + a2 (z z 0) v~ (zc) '!· (34) 
X k0 u(zr) v(zo) · 0 ' 0 ' u"(zo)~ 

The summation in expression (31) for u<nc> can 
be carried out in an entirely analogous fashion. The 
factor I2f.l. ( e, 0 can be taken out of the integral with 
8=1r (i.e., Z=O). 

We finally obtain for u<nc>: 

(nc) _ 6 (k R ) R2 ot2 [kru' (zr) _ v' (z0) l a (z0 , zh 0) 
cr - 1 o 0 0 ko u (Z1) v (zo) ~ a (Zo,zo, 0) 

X v (zo) u2 (zo) I (1t ~) tan -1 {a (z z 0) v (Zo)}. (35) 
u (zr) 20 ' o• o• u (zo) 

We note that all quantities a (z, z, 0) are very 
close to unity for the parameter values occuring in 
reality. 
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The figure shows the ratio of the total cross 
section for the excitation of the first vibrational 
level over the cross section for Coulomb excita
tion by Ql particles for the nucleus 52 Te120 ( E1 

= 0.56 Mev). 
In the case of protons the nuclear corrections 

are more important. 
We note in conclusion that in the case of a par

ticles we can replace the boundary condition (12) by 
the condition of complete absorption, accounting for 
the presence of a diffuse boundary in the same way 
as was done in the discussion of the excitation of 
the rotational levels. Our discussion is easily gen
eralized to the case I0 ;.! 0, A. ;.! 2. The excitation 
of higher vibrational levels (n > 1) has to be con
sidered together with terms of higher orders in 
V c. This is connected with great difficulties, since 
the adiabatic approximation is not applicable in this 
case. 
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