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A method is developed for finding a nonstationary solution of the Boltzmann equation in the 
case of strong electric fields. An expression is derived for the electron distribution function 
in a completely ionized plasma located in a strong electric field. It is shown that in the first 
approximation the distribution is a Maxwellian one superimposed on the general translational 
motion of the electron gas. In the first approximation the translational velocity increases pro
portionally with time, whereas the temperature remains constant. 

IN the solution of the problem of the velocity dis- lisions, and therefore, the electron energy will 
tribution of electrons in an electric field usually continuously increase with time.* 
the investigation is restricted to the stationary This effect is most pronounced in the case of 
case. Moreover, the method of successive approxi- fully ionized gases,t when the particles are sub-
mations is used, which is based on expanding the ject to a Coulomb interaction and, consequently, 
distribution function fe ( v) in spherical harmonics the collision frequency is given by v ( v) "' v -a. 
in velocity space.1•2 However, this method is jus- However, in the case of weak fields and not very 
tified only when the anisotropic part of the distribu- high temperature, the number of such electrons 
tion function is much smaller than its isotropic part, is very small, although it does increase with time. 
or, which is the same thing, when the mean directed Therefore for limited time intervals in a number 
velocity is smaller than the thermal velocity. In the of problems one can still utilize the stationary so
stationary case this condition, as a rule, is fulfilled, lution for the distribution function, if one formally 
as a consequence of the small exchange of energy € cuts it off at large velocities (of the order of sev-
between the electrons and the gas atoms (!:::.€/ E eral times the thermal velocity). But if the elec-
"' 2m/M « 1 ). However, for times shorter than tric field is sufficiently large, so that even over 
the relaxation time, the mean directed velocity one mean free path the electrons acquire sufficient 
may exceed the thermal velocity, and thus the energy to enter the state of continuous accelera-
above solution method turns out, generally speak- tion, then the number of "run-away" electrons is 
ing, to be inapplicable to the description of the large, the mean directed velocity may consider-
processes leading to the establishment of a steady ably exceed the thermal velocity, and the usual 
state. In a number of cases, however, such proc- method of solution becomes inapplicable. In this 
esses are of an essentially nonstationary charac- case it is natural to utilize another method of ob-
ter. Thus, for example, it can be shown that if the taining an asymptotic solution, which consists in 
cross section for the collision of electrons with expanding the distribution function in inverse pow-
heavy particles falls off faster than 1/v, then no ers of the electric field, taking for the first approx-
stationary state exists at all in the presence of a imation the solution of the Boltzmann equation with-
constant electric field. The nonexistence of a sta- out collisions. 
tionary distribution is associated with the appear- As an illustration of the application of the method 
ance of so-called "run-away" electrons.3 - 5 The 
"run-away" phenomenon consists of the following. 
The energy lost by an electron per unit time is 
proportional to the collision frequency v ( v ) . Evi
dently if v(v) falls off with the velocity faster than 
1/v, then when the electron velocity exceeds a cer
tain critical value the increase in the electron en
ergy under the action of the external electric field 
becomes larger than the energy losses due to col-

*Reported at the IV International Conference on Ionization 
Phenomena in Gases (Upsala, August 1959). 
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*An attempt at a theoretical investigation of this phenome
non on the assumption that the ratio of the ion mass to the 
electron mass is infinite (m/M = 0) was made by Dreicer: who 
reported the results of a numerical integration of the Boltzmann 
equations for the case of a fully ionized plasma. 

t Strictly speaking the "run-away" electrons are present at 
any degree of ionization, even when collisions with neutral 
atoms play the dominant role, since at sufficiently high veloc
ities the screening becomes unimportant, and the electrons are, 
in fact, scattered by the atomic nuclei. However, in this case 
the number of such electrons is very small and, as a rule, they 
need not be considered. 
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outlined above we shall obtain the velocity distri
bution of electrons in a fully ionized homogeneous 
plasma situated in a strong electric field. Let us 
first consider the case when the electric field is 
constant in time. 

The equation from which the electron distribu
tion function fe ( v, t) may be determined has the 
following form 

at. , at. 
at,- I av = St {f.}, 

St {f.}= St,, {f,f.} + St,; {fef;}, (1) 

where y = - eE/m, the terms Stee { fefe} and 
Stei { fef i} take into account the electron -electron 
and electron-ion collisions, while fi(V) is the ion 
distribution function. 

By following the procedure outlined above and 
by setting 

f e (v' t) = f~1 ) (v' t) + f~2 ) (v' t) + ... ' (2) 

we obtain 
at~1> at~1> 
Tt+rav=o, 

at<n) at(n) aT- +i ;v = St{f~n-1>}, n = 2,3, ... (3) 

From this equation, letting f0 (v) denote the initial 
distribution function 

fo (v) = f,(v, t) lt=o• 

we obtain 

f~1 >(v, t) = fo(v-rt), 
t 

nn> (v, t) = ~ dt' ~ St {f~n-1 > (v', t')} o (v'- v- 1 [t'- t]) d v'. 

0 (4) 

We note that from the relation 

~St{f.}dv=O 
it follows that 

~~~n>(v, t)dv = 0 (n = 2, 3, 4, ... ) 

and, thus, the normalizing factor is determined 
just by the first approximation to the function. 

(5) 

In order to calculate f~n> (v, t) we must know 
the collision operator St { fe} . The expression 
for this ope·rator is given by Landau. 6 It has the 
following form 

Stee{fefe}=-IX/-I[te a~~ -t:!'•Jvkn(v,v')dv', (6) vk ~ avn vn 

where summation over n, k = 1, 2, 3 is implied; 

t;=f.(v',t), f~=f;(v',t), o=mfM, 

while A is a slowly varying function of the particle 
velocity. The expression for A obtained by Landau 
is applicable only to a low temperature plasma 
( e2 /tiv > 1 ) . In our case we must use a different 
expression given by Landshoff. 7 Since A is in
sensitive to the choice of the values of the density 
and the velocity we will in future suppose that 
A = const. 

Let us suppose for the sake of simplicity that 
the ions have a Maxwellian distribution correspond
ing to the temperature T0, i.e.,* 

f; (v) = N (~;f2rc)'l• exp (- ~;v2f2), 

f 0 (v) = N (~e/2rc)'l• exp (- ~.v2/2), (8) 

where v2 = v~ + v~ + v~, while f3e = of3i = m/kT0• 

We choose the z axis in the direction opposite to 
the electric field vector E. Then it follows from 
(4) that 

n1>(v, t) = N(~e/2rc)'l•exp {--}~.[vi+ v~ + (v3-rt)2l}, 
(9) 

where y = I y 1. 
We substitute expressions (8) and (9) into (7) 

and integrate over the velocities. Then, on taking 
into account the fact that Stee { f~0fM >} = 0, and 
neglecting quantities of order o compared to 
unity, we obtain 

St {f~1)} = -IX~.M~1) (v' t)[va'Y (v V~;/2)- ortx (v)] V-1rt' 

(10) 

where 
z 

z I 'Y (z) = z-2 (<D (z)- zo<Dfoz), <D (z) = y~ J e-u' dy, 
0 

(11) 

Now on substituting the expression obtained for 
St { f~0 } into (4), and on integrating, we obtain to 
the same order of accuracy after introducing the 
notation v~ = v~ + v~, Vz = v3 : 

*In general, the ion distribution function in strong fields 
need not have the form (8). However, in the case under consid
eration at present the specific form of fi(v) has only a small 
effect on the final result. 
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~aNR }R v2 (v - 'Y/) [(v -'Yt)• + v2 + 2jR J f(2l(v, t) = _-_1-'_ef(l) (v, t) 1-'e r z • z • r 1-'i 

• 'Y e [ 2 (v; + 2/~;) (v 2 + 2!?>;)'/, 

. 2/13; + v; + '12~ev; f(v 2 - j1)2 - v;J 
- It -'-------'=-----'----'-------;-;,------
. (v; + 2!~;) (v2 + 2;?>;)'1' 

Pev; (v2 - jl) [(v2 - j1) 2 + v; + 2/P;1'f, 

2 (v; + 2/p,-) 

- 1 - -. In -----::----=-..-----==----( ~.v;) (v2 + 2/p,-)'1' + V 2 } 

2 [(v2 - j1) 2 + v; + 2/~;1'" + (v2 - jl) · 

By proceeding in a similar manner we qan, in 
principle, determine fe(V, t) to any predetermined 
degree of accuracy. However, since the successive 
approximations are of no fundamental interest, while 
the expressions obtained for them are rather awk
ward, we shall limit ourselves to the second ap
proximation. In this case we have 

- (Pe ,•;, -u•l [ uzu;(u2+t)'l• 
fe(U,-r)-N ,--,;:1 e .li-E 2 

L. .. ) ur + '0 

eu2 u; (u 2 + li) + -r [o + u; (1 + u;- u;)] 

e (U; + o) [(U2 + -rfe)2 + u; + oj'/, 

-t- ( I - u2) ln ----'=--------'---;-;-----"----
. [(u2 + -rje)2 + u; + o ]';,.+ u2 + -r/e ] }. 

r (u•+o)'h+uz ' 
(12) 

where the following dimensionless variables have 
been introduced 

~;-- •;, 
'10 = y 2rxN~e, 

By comparing the successive terms of the ex
pansion (2) we can easily obtain a sufficiency cri
terion for the applicability of the method outlined 
above. It has the form 

E ::> Ek ln ( 4-rE;oEk), 

wb.ere in accordance with the definition [cf. (13)] 

Ek=2·10-12 NJT0 v/cm, 

if the temperature T0 is expressed in electron
volts. We note that if we are interested only in 
the calculation of averages, then it is sufficient 
to require that the series (2) should converge 
only for velocities which in order of magnitude 
are equal to the thermal velocity. In this case 
the condition for convergence is somewhat relaxed 
and assumes the following form 

(14) 

By utilizing the expression (12) obtained above 
for fe (v, t) we can determine the time depend
ence of the average directed velocity z ( T) 

= ( !13e) 1/2 v, and of the square of the components 
Of the mean squared relative velocity along and 
at right angles to the electric field: w11 ( T) 
= !/3e(vi- vi) and wl(T) = ~/3eVf· However, it 
is simpler to proceed directly from equations (3). 
On multiplying each of them by v, adding them, 
and integrating over the velocities, we obtain after 
neglecting, as was done previously, quantities of 
order o compared to unity 

Z (-r) = (j/yk) {~- (E2j\/:0[J - 1/z-r-1E v;<!J (-r;E)]}. (15) 

Similarly we obtain 

~I• 

- 3 \ -- - --- e-x' In x dx , ,. ['¥ (x) 4 l } 
.) X 3 y 7t -
() 

~I• 

( ) 1 , { 3 \' '¥ (x) d "" ( -=) wn "=T-,s T .l_x_ x- ..... € 
0 

-~ [I- e y;<D(-rje) ]"} 
7t l-r ' 

i.e., w1 increases logarithmically with time, 
while w11 remains practically constant. 

(16) 

(17) 

The figure shows the contours of the distribu
tion function for different instants of time in terms 
of the dimensionless variables ur, uz for the case 
E = 5 x 10-2 • It is interesting to note that in the re
gion of small ur the distribution function has a dip 
which increases with time, i.e., the number of par
ticles with zero radial velocity continuously dimin
ishes. It is also characteristic that the distribution 
function is asymmetric in the direction of the elec
tric field. The physical reason for this asymmetry 
lies in the difference in the initial conditions for 
particles which have different directions of veloci
ties at the instant when the field is switched on. 
Thus, for example, the velocity of those electrons, 
which have been moving against the field at the ini
tial instant of time, will continually increase, and, 
consequently, the probability of their colliding with 
ions will decrease, while the velocity of electrons 
with negative values of Vz will at first decrease, 
and the probability of collision will increase. In 
general, the particles at the trailing edge of the 
distribution function ( Uz < 0 ) , undergo a larger 
number of collisions than the particles at the lead
ing edge ( Uz > 0 ) , and this leads to the asymmetry 
indicated above. The fact that the distribution 
function has a "gap" is apparently also related to 
the previously mentioned dependence of the colli
sion frequency v on the velocity. Indeed, those 
electrons which have a low radial velocity have a 
greater probability of colliding than electrons with 
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"r -r=O.I'> If, moreover, the initial distribution is Maxwellian, 
we have 

Lines of constant values of the distribution function 
N"'[f3e/277]"'!, fe(u, '1:). 

the same longitudinal velocity Vz, but with a 
larger value of vr, as a result of which the num
ber of particles with small values of Vr decreases 
continually. 

Thus we see that in a strong electric field the 
electron velocity distribution stays close to the 
initial distribution (with the exception of a small 
range of ur close to zero) superimposed on the 
average translational velocity Z(T), and merely 
spreads slowly with time in the direction perpen
dicular to the electric field vector. 

In the above discussion we assumed that the 
electric field E was constant in time. However, 
this assumption is not essential, and the method 
of solution outlined above may be easily general
ized to the case when the electric field depends on 
the time. Indeed, on setting E ( t ) = E cp ( t ) , where 
E is constant, and on taking into account the fact 
that the replacement of the variable t by x ( t ) 

t 
= J cp. ( t) dt brings the equation 

o of, of, (1') 
ar + cp(t)"(av = St {fe} 

into the form (1), we evidently obtain in place of (4)' 

n1>(v, t) = fo(v-rx(t)), 

f~2> (v, t) 

I 

= ~ dt' ~ St {f~1>(v', t')} ll (v'- v -r [x (t')-x(t)l)dv'. 
0 (4') 

(10') 

and the problem of finding the second approxima
tion to the function reduces, as before, to a single 
integration. Finally, the expressions for the av
erage directed velocity z ( T), w 1 ( T), and w11 ( T) 
may be obtained in the same way as in the cas~ 
cp (t) = 1. After a few simple transformations we 
find 

-rfvt 

z ('t) = ,: {VoX ('t/Vo)- E~o ~ '¥ coxe(C)) dq, (15') 
0 

-r;v. 

W_j_ (1:) =} + 8 \ [<D(VoX(C)) -~ tp' (VoX (C))] _5_' (16,) 
~ e , ~ e x (C) 
0 

't'/Ve 

W II (1:) = } + Yo f ~ Z (v0C) '¥ (voxe(C)) dC ' 
0 

-rjv, 

_ 8 \' [<D (VoX(~)) _ -J_ '¥(VoX(~))] _5_ 
.) e :l e x (C) ' 
0 

(17') 

where the functions <P(z) and 'll(z) are defined 
in accordance with (ll). The criterion for the ap
plicability of these formulas may be obtained from 
the condition that the correction terms in formulas 
(16'), (17') should be small compared to the princi
pal terms. It has the following form 

(14') 

We note that in the case when the electric field 
increases monotonically with time, it follows from 
expressions (16') and (17') that the quantities w 1 ( T) 
and wii(T) remain bounded, i.e., in contrast to the 
case cp (t) = 1 the electron "temperature" tends to 
a certain constant value which is equal to 

T max= %To [W_j_ (oo) + Wn (oo)]. 

In conclusion we note that if we do not make the 
assumption that the initial electron temperature 
Te is equal to the ion temperature T0, then for 
6T0 /Te « 1 the formulas obtained earlier for fe, 
z, w 1• and wll remain valid if in them we replace 
T0 by Te, and 6 by oT0 /Te. 

The author is indebted to M. S. Rabinovich for 
useful discussions. 

Note added in proof (October 21, 1959). In this 
paper we have assumed that the ion distribution 
function is given. The simultaneous solution of 
equations for the electrons and the ions shows that 
the results referring to the electrons remain unal-
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tered. Analogous expressions are obtained for the 
ions, with the expansion parameter E remaining 
the same, i.e., the concept of a strong field is the 
same both in the cases of ions and electrons. 
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