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The differential cross section for scattering of electrons, positrons and f.1. mesons on atoms 
is derived in the Born approximation as a function of the polarization of the particles in the initial 
and final states. The change in the polarization vector from the scattering of the particles by 
free unpolarized electrons is also obtained. 

1. INTRODUCTION 

THE behavior of polarized electrons, positrons 
and f.1. mesons has recently been the subject of 
many experiments. In this connection it is of in­
terest to calculate the cross sections for various 
processes involving the interactions of polarized 
particles with matter, in particular elastic and in­
elastic scattering of such particles by atoms in 
matter. Coulomb scattering of electrons including 
polarization effects was discussed in the review 
article by Tolhoek1 and in a number of other 
papers. 2- 5 Ivanter6 obtained radiative corrections 
to the Coulomb scattering cross section of polar­
ized electrons and f.1. mesons. Polarization effects 
in scattering of Dirac particles on free electrons 
were also considered by a number of authors. 7- 12 

However in reality the electrons in matter are not 
free. Effects due to the binding of electrons in 
matter are important for small angle scattering. 
This region of angles is particularly relevant when 
depolarization due to multiple scattering and brems­
strahlung of polarized particles is studied, since in 
these processes mainly small angle deviations are 
involved. 

In this paper we study inelastic collisions be­
tween polarized particles and atoms. We obtain, 
in the Born approximation, the differential cross sec­
tion dun (8, t 1, t 2 ) for scattering of the particle 
through an angle e with excitation of the n-th level 
of the atom and change in polarization t1 - t2, as 
well as the angular distribution of the inelastically 
scattered particles independently of the energy loss. 
We also study the change in polarization upon scat­
tering by free unpolarized electrons. The calcula­
tions are performed for the general case of arbi­
trary polarization of one of the particles in the 
initial and final states. 
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2. SCATTERING ON ATOMS 

The scattering of a relativistic unpolarized elec­
tron on an atom was first discussed by Bethe.13 He 
found, in the Born approximation without taking into ac­
count exchange effects, the following expression for 
the cross section for a collision resulting in the 
atom making a transition to the n-th level: 

(1) 

z 

Fno = ~ Cjl~ [zA 0 + .2;eiqri (- A0 + Aoci) }p0d1:. 
1=1 

(2) 

Here E, p, E', and p' are the total energy and 
momentum of the particle before and after scatter­
ing respectively, ~E = E - E' = En- E0 is the en­
ergy transfer, hq = p - p' is the momentum trans­
fer, ¢0 and 1/Jn are the wave functions of the atom 
in the initial and final state, and aj is a Dirac op­
erator acting on the spin variables of the j -th 
atomic electron. The particle undergoing scatter­
ing is described by a plane wave with a spinor fac­
tor u ( t) and u ( ~' ) for the initial and final states 
respectively, where t and ~' describe the particle 
polarization in its rest frame, u and u' are nor­
malized to unity. At that 

A 0 = (u'*, u), A= (u'•, ocu). (3) 

The expression for the transition matrix element 
z 

I { "-' . 1 A Fno =.) </;~ ZA 0 + ,:;.;.e'qri [- A0 + c VjA 
}=1 

-+ (ti/2mc) A (q + i [a1xql)J} %d1:. (4) 

on which the following discussion is based, is ob­
tained by going over in Eq. (2), in a conventional 
manner, to the nonrelativistic approximation for 
the atomic electrons. Here Vj is the velocity 
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operator for the j -th atomic electron and O'j is 
a Pauli matrix. 

Since Eq. (4) is rather complicated in the gen­
eral case, we shall evaluate the matrix element 
F no in the dipole approximation, i.e., we assume 
that qa « 1, where a is the radius of the atom. 
This corresponds14 to small scattering angles e 
« Po lp and not too large atomic excitation ener­
gies L:.E « p0v, where Po is of the order of mag­
nitude of the average momentum of the atomic 
electrons and v is the velocity of the particle. 
In this approximation, with exp (iq • rj) replaced 
by 1 +iq • rj and leaving terms proportional to q 
in Eq. (4), we find 

dno = e ~ ~~ ~ fj~0d't', 
I (5) 

Here dno is the matrix element of the electric 
dipole moment. If the atoms in the initial and final 
states are unpolarized then I Fno 12 should be av­
eraged over the initial and summed over the final 
states corresponding to different values of the pro­
jection of the angular momentum of the atom. De­
noting this averaging and summing by a bar we 
obtain 

IF no)2 = f I dnol 2 {q2) A0 )2- 2 {LlE/fic) 

x Re (qA) A0 + (6.s/lic)2 jAj2}. (6) 

For calculational purposes it is convenient to 
express the bispinor expressions appearing in Eq. 
(6) in terms of traces of certain 2 x 2 operators. 
This method was used by Olsen.15 Consider, for 
example, the calculation of I A0 12• We express 
the bispinor amplitudes involved in A0 in the form 

U - e + m \ V u' -- e' + m V' V-( 1 v-( 1 ) 
- ~ opf(e + m) l ' - "2€' op' f(e' +m) ' 

where V, V' are spinors describing the initial 
and final polarization states. With the help of 
Eq. (3) we obtain 

(7) 

Here T is a certain 2 x 2 operator whose explicit 
form follows from Eq. (7). Introducing the projec­
tion operator onto a state with polarization I; 

P(~) = T(l +~a), (8) 

we find 

) A0 12 = f Sp {T+ (I+ ~'o) T (I+ ~a)}. (9) 

In the following we shall measure q in units of 
mcln and will use the abbreviations y = E/mc2 

and {3 = vIc. When obtaining an explicit expres­
sion for dan it is necessary to keep in mind that 

in the range of validity of the dipole approximation 
L:.y and e are small quantities. We therefore ex­
pand the right hand side of Eq. (1) in a series and 
keep only the leading terms in q2 and ( L:.y )2• 

These terms may be of the same order in the ex­
treme relativistic limit; in the nonrelativistic limit 
the terms with ( L:.y )2 are negligibly small. We ob­
tain the following final expression for the differen­
tial scattering cross section: 

do e2 -- 2 

d(; = 3r•c•i dno) 2 [q• -'(~'1)']2 {[2q2 - 2 (6.r!r)2 (r~ + I)] 

X (I + ~1 ~2) + [- q• ( 1- I )2 /1'2 -t- ( 6.r /j) 2 ( 1'- I) 

x (r-3)]·[(n1~1)(n1~2) + (n~C1)(n2C.)l + [q2 (r-l) 

x (3r- 1)11'2 + (6.r/r) 2 (1'- I)(- 3r + 5h2l x (n1~1) 

x (n2~ 2) + [- q2~2 + ( 6.j/y)2 (y2 - I)] (n.;1) (n1 ~.)}, (10) 

where n1 and n2 are unit vectors in the direction 
of the particle momentum before and after scatter­
ing. As can be seen from Eq. (10), an initially un­
polarized beam remains unpolarized after scatter­
ing. However if transitions between states with 
definite projection of the angular momentum of the 
atom are registered, then terms linear in t, t' 
will appear in Eq. (10). This means that the ini­
tially unpolarized beam becomes polarized after 
scattering. 

Now let us determine the angular distribution 
of the polarized particles in inelastic scattering 
by the atom, independent of the energy loss: 

do(B, ~. ~')=~don. (11) 
n't-0 

It is shown in reference 14 that if the scattering 
angle satisfies the condition e » p0v0 lpv, where 
v0 is the average velocity of the atomic electrons, 
then q is independent of n and the summation in 
Eq. (11) may be carried out in a general form by 
using rules of matrix multiplication. The term 
(L:.E/nc )2 in Eq. (1) may be neglected in compari­
son with q2• The sum over n entering into Eq. 
(11) is transformed as follows: 

~I Fan 12 = (FF+)00 -) F00 12 • (12) 
n+O 

The operator F in Eq. (12) may be taken in the 
form 

z 
F = (z- ~exp{iqrf})A0 ; 

/=1 
(13) 

the remaining terms will contain, after averaging 
over the ground state of the atom, an additional 
factor of order (v0 lc )2 and may be neglected. 
Substituting Eq. (13) into Eq. (12) we obtain 

~!Fon)2 =ZS(q))A0 1 2 , (14) 
n+o 
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where S ( q) is the "incoherent scattering function" 
introduced by Heisenberg16 and tabulated by Bewilo­
guaY 

S (q) = 1 -+F; (q) + + 2] exp {iq (ri- rk)}, (15) 
f+k 

where F ( q) is the atomic form factor. From Eqs. 
(14), (ll), and (1) we obtain the following expression 
for the angular distribution of polarized particles 
in inelastic scattering through a small angle 
(8 « 1): 

dcrjdQ = 2Z (e"fpv)" S (q) u-4 {1 + ~ 1 ~ 2 

-+ ~2 (n2~1) (n1~2) + [ f- ~2 + (1'- 1 )211'2] (n1~ 1) (n2 ~2) 

- 1(1' -1)2/21'2] [(n1~1) (n1~2) + (n2~1) (nz~z)]}. (16) 

The dependence of the cross section on polarization 
is precisely the same as that obtained in Coulomb 
scattering of electrons in the Born approximation. 
This is explained by the fact that the neglect of ~E 
is equivalent to going over from inelastic to elastic 
scattering in a certain spherically symmetric field. 

Equations (10) and (16) are valid for electrons, 
positrons, and JJ- mesons. Exchange effects, which 
exist in the scattering of electrons and positrons 
and which were not taken into account, are unim­
portant in the region of validity of these formulas 
(8«1). 

3. SCATTERING ON FREE ELECTRONS 

If the scattering angle satisfies the condition 
8 » p0 /p (which means that the energy transfer 
is much larger than the binding energy ) then the 
binding effects of the atomic electrons may be 
neglected. In this region inelastic scattering by 
an atom is equivalent to scattering by free elec­
trons. The change in the polarization vector of 
electrons and positrons in scattering by free elec­
trons was calculated for certain special cases in 
a number of papers. Ford and Mullin8 obtained 
the change in the polarization of a longitudinally 
polarized electron when scattered by an electron. 
Mukhtarov and Perov12 calculated the longitudinal 
component of positron polarization after scattering 
(the initial polarization being assumed to be also 
longitudinal). Lastly, Kresnin and Rozentsve1g7 

determined the polarization of an initially unpolar­
ized electron beam after scattering by polarized 
electrons. Since the results in reference 7 are 
given in the center of mass system one could de­
rive from them an expression for the polarization 
vector of an electron beam deflected by an angle 
8 after scattering by unpolarized electrons, by 
replacing 8 by 7r - 8 in formulas (23) - (27) of 

that paper. However there apparently are mis­
takes in the indicated formulas since, for example, 
it follows from Eq. (26) that in the nonrelativistic 
limit in scattering through an angle 8 = 0 the 
polarization is reduced four fold which is obviously 
false. From Eq. (27) one obtains the information 
that in the scattering of a longitudinally polarized 
electron in the extreme relativistic limit its spin 
keeps its original direction independent of the scat­
tering angle, which is also false. Therefore we 
give here expressions for the polarization of an 
electron beam after scattering by unpolarized 
electrons, obtained by the conventional method 
of projection operators: 

~ 2 (dcr;dQ) = A1~1 + [A2 (nz~d 

(17) 

In this formula t 1 and t2 refer, as before, to the 
rest system of the electron; however n1 and n2 

now indicate the momentum direction before and 
after scattering in the center of mass system; 
do/drl is the Moller scattering cross section of 
unpolarized electrons 

~-1 (2"(2 -1)2 [-4 ___ 3_ (j2 -1)2 (1 _4_)]· 
dQ - 4 "(2("(2 -1)2 sin4 9 sin2 9 + (2"(•- 1)2 + sin2 9 

(18) 

Here r 0 = e2 /mc2, and y and 8 are the energy 
and deflection angle of the electron in the center 
of mass system. The energy is measured in units 
of mc2• The coefficients Ai are given by 

A;= [r~/21'2 ( r 2 - 1 )2] a£, 

a1 = (2y2- I )2 (I + cos 6)jsin4 0- (21'4 - I )/sin2 6, 

a2-=,- (r2- 1) [(2r2- I)+ 2r 2 cos 8]!sin4 8, 

aa = (1'-1) [(2r2 -1)(3r + 1) + 2(3r3 + "(2 -2r-1) 

xcos O]!sin' 0 - (y- 1 )2 (2y2 - 1) ( 1 + cos 8);sin28, 

a4 = (y- 1 )[- 2y3 + 2y + 1 - 1 (212 - 1) cos 8]fsin4 e 

In the nonrelativistic limit we obtain 

(19) 

r _ 2 (1 + cos G) cos 9 r 
'" 2 - 1+3cos2 9 '"1 ' 

(20) 

In this case the spin does not turn since there is no 
spin-orbit interaction, however the degree of polar­
ization is reduced due to exchange effects. In the 
extreme relativistic case we obtain 

~ 2 = 4 (3 + cos2 orz {(1 +cos 0) 2 ~ 1 - (I+ cos 6) (n2~ 1) n1 

+ (1 +cos 8) (3- sin2 6) (n 1~ 1) n2 - (1 +cosO+ sin2 6) 

(21) 

If the initial polarization is longitudinal then after 
scattering through a small angle ( 8 « 1) t 2 = t1n1, 
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i.e., the polarization remains longitudinal. 
The polarization of final state positrons in the 

scattering of a polarized positron beam by elec­
trons may also be expressed in the form of Eq. 
(17). However da/dn now stands for the scatter­
ing cross section of unpolarized positrons by elec­
trons 

do r~ [ (2'J'2- 1)2 814 -1 12'J'4 + 1 
d!.2 = 16y2 ('J'2- 1)2sin• (9 1 2)- 12 ('J'2 -1) sin2 (9 I 2) + -,-.-

(22) 

In this case the coefficients Ai are 

r~ [ (2'!'2 - 1 )2 Rj• - 1 4 ( 12 + 1 )] 
A1 = 16"(2 (')' 2 -1) sin• (9 1 2) - 12 ('J'2 -1) sin2 (9 1 2) + 12 ' 

r~ [ 4')'2 -1 4 J 
A2 = 3212 - ('!'' -1) sin• \9 1 2) + sin2 (9 I 2.) ' 

2 A _ .2_ [ 12j8 + 412- 7y- 3 _ 4 (71• + 418- 3'l'2 + 1) 
3 - 32')'2 ('J' + 1)2\j -1J2sin4 til 1 2) 12 ('J' + 1)2 sin2 (9 1 ;,.) 

16(j-1) (2'J'2-1) 16 ('J' -1)2 • 2 9] + 1'2 ('!' + 1) 1'2 sm 2 , 

r~ [ (21' + 1 )2 
A. = 32y2 - ('J' + 1)2 sin• (9 I 2) 

2 (2'J'S-4j2_ I+ 1) 8(j -1)] 
+ 12 ('J' + 1) sin2 (9 1 2) + y2 · 

(23) 

In the nonrelativistic limit the positron polarization 
is not changed by the scattering, i.e., t1 = t2. This 
is explained by the fact that exchange effects are 
absent in positron-electron scattering in the non­
relativistic limit. 

In the extreme relativistic limit we obtain 

[ · 4 9 + ( I + · 4 9 ) 4 9 J-1 x sm ;z- sm 2 cos :z- . (24) 

In the scattering of a longitudinally polarized posi­
tron through a small angle we have, as in the elec­
tron case, t2 = t1n2. 

In the scattering of 1J. mesons by electrons the 
exchange effects are absent and the masses of the 
colliding particles are different. Meson polariza­
tion after scattering is given by Eq. (17) in which 
da/dQ now stands for the scattering cross section 
of unpolarized mesons 

~ = (~)2 p•cos2 9 + p2 (1 + 2ye + ~2) cos 9 + p2 (3'!'2 + 2ye -2) + ~2 (y2 + 1) 
d!.2 c2 8 (e + y) 2 p• sin4 (9 1 2.) ' 

(25) 

where ~ = m/iJ.. The coefficients Ai are: 

( e2 )2 [ 9 J-1 A1 = !'cz a1 ~8 (s + '\')2 p4 sin4 2 , 

a1 = p1 (2'12 + 2'\'s- 1 + 1::!. 2) cos 9 + p2 (2'\'2 + 2'\'s- 1) 

+ t:J.2 ('\'2 + 1), 

a2 =-2p•- p2 (2'\'s + I::J.2), 

aa = P2 ( 1 - I ) 2 cos 2 9 + 2 ( '\' - 1) 2 [ ( 1 + 1) 

x ('I+ 2s) + 1::!.2] cos 9 + 3p4 + 2p21s + p2 1::!. 2, 

a4 = p2 ('1-1) cos 9- p2 ('\'-1) (2'1 + 1) 

- 2p2s ('I- 1)- ('I- 1)2 1::!. 2 • (26) 

In Eqs. (25) and (26) y and E denote the total en­
ergy of the meson and electron respectively meas­
ured in units of /J.C2, and p is the momentum in 
units of /J.C where /J. is the meson mass. If the 
meson is longitudinally polarized then the proba­
bility of the spin flipping with respect to its initial 
direction is given for low meson velocities by the 
formula* 

*In the paper by Ford and Mullin" the analogous formula 
(20) contains an superfluous term -sin4 ((J/2). 

Q = ( ~ y ~~ sin2 } ( 1 + sin4 }) , (27) 

where f3L is the meson velocit)" in the laboratory 
system in units of c. In the extreme relativistic 
case we find 

~2 = {4 (I +cos 9) ~ 1 - 4 (n2~ 1 ) n1 + (cos29 + 6 cos 9 + 5) 

X (01 ~I) Oz- 4 [ (nl ~I) 01 + (02~1) 02]} 

x(cos2 9 + 2 cos 9 + 5t1• (28) 

For a longitudinally polarized meson Eq. (28) be-
comes 

~2 = C1n2. 

The authors are grateful to A. Z. Dolginov for 
suggesting the research project of which the pres­
ent paper is a part, and for valuable discussions. 

Note added in proof (October 5, 1959). After 
this paper was submitted to the editor , G. V. Frolov 
has shown us his unpublished work which is a con­
tinuation of his previous work. 18 Our formulas 
(25)- (27) are special cases of Frolov's results. 
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Vacuum Tubes (see Methods and Instruments) 
Viscosity (see Liquids) 
Wave Mechanics (see Quantum Mechanics) 
Work Function (see Electrical Properties) 
X-rays 

Anomalous Heat Capacity and Nuclear Resonance in 
Crystalline Hydrogen in Connection with New Data 

ERRATA TO VOLUME 9 

On page 868, column 1, item (e) should read: 

on Its Structure. S. S. Dukhin- 1054L. 
Diffraction of X-rays by Polycrystalline Samples of 

Hydrogen Isotopes. V. S. Kogan, B. G. Lazarev, and 
R. F. Bulatova - 485. 

Investigation of X-ray Spectra of Superconducting CuS. 
I. B. Borovski1 and I. A. Ovsyannikova - 1033L. 

Optical Anisotropy of Atomic Nuclei. A. M. Baldin - 142. 

(e). Ferromagnetic weak solid solutions. By way of an example, we consider the system Fe-Me with 
A2 lattice, where Me = Ti, V, Cr, Mn, Co, and Ni. For these the variation of the moment m with con­
centration c is 

'dmjdc = (Nd)Me :t= 0.642 {8 (2.478- RMel +6J2.861- RMe J :t= [ 8 (2.478- Rpe) + 6 (2.861- RFe)]'• 

where the signs - and+ pertain respectively to ferromagnetic and paramagnetic Me when in front of 
the curly brackets, and to metals of class 1 and 2 when in front of the square brackets. The first term 
and the square brackets are considered only for ferromagnetic Me. We then have dm/dc = -3 (-3.3) for 
Ti, -2.6 (-2.2) for V, -2.2 (-2.2) for Cr, -2 (-2) for Mn, 0.7 (0.6) for Ni, and 1.2 (1.2) for Co; the paren­
theses contain the experimental values. 
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224, Ordinate of figure 1023 1029 
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329, Third line of Eq. (23a) +(1/4 cosh r + ... +1/4(cosh r + ... 
413, Table II, line 2 from bottom -0.0924± -1.0924± 
413, Table II, line 3 from bottom +1.8730± + 0.8370± 
479, Fig. 7, right, 1st line 92 hr 9.2 hr 

499, Second line of Eq. (1.8) + k sin2ajw~+<c2k" ... I 0 2 •l 2 ( ~- r --+ k;wH sm a <c-k ... 

648, Column ;I., line 18 from top 18 x 80 rom 180 x 80 rom 

804, First line of Eq. (17) - 1 / 3 (a;a;+. . .. -3 ('ax a;+ 

967, Column 1, line 11 from top o (N', 1t) z 46 (N', N') o (N', r:) > o (N', A') 

976, First line of Eq. (10) e" e" 
= :or"c4 = iJ1t2c2 

978, First line of Eq. (23) [ (2y2- 1)2 I (2;2-1)2 
(y2 -.1) sin4 (0/2) L (y2- 1)2 sin4 (0/2) 


