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An approximate set of dispersion equations for the Green's function of the photon and vertex 
part has been derived in quantum electrodynamics on the basis of the dispersion relations and 
unitarity conditions. The "nonsubtraction" procedure is employed in the asymptotic investiga­
tion of the solutions of' the equation. Agreement with the renormalized perturbation theory 
when the fine structure constant tends to zero has been used as the boundary condition. It is 
shown that the vertex function decreases asymptotically with increase in the square of the 
photon 4-momentum q2 = (p+ + p_ )2 for P! = p: < m 2 where p_, p+ are the electron and 
positron 4-momenta. This leads to finite renormalization of the charge in the approxima­
tion under consideration. 

1. INTRODUCTION 

THE method of dispersion relations, based on very 
general requirements of covariance, causality, posi­
tiveness of the energy spectrum (spectrality), and 
unitarity has been developed intensively in recent 
years in quantum field theory. 

This method permits us to express the Green's 
function (for the amplitudes of processes ) in 
terms of invariant spectral functions which can 
in turn be connected with the Green's function of 
other processes by means of the unitarity condi­
tions. Thus a set of equations for the Green's 
function can be obtained in principle. This set of 
equations possesses important advantages over the 
usual approach. First, it contains only renormal­
ized quantities and consequently does not lead to 
the appearance of expressions that diverge at high 
momenta, the latter effect being characteristic for 
perturbation theory and the Schwinger-Dyson equa­
tion; second, it interrelates the amplitudes of vari­
ous processes on the energy surface. 

Serious hopes of avoiding the well-known diffi­
culties attached to the approximate solutions of 
the Schwinger-Dyson equation1- 3 are connected 
with the method of dispersion relations. 

A whole series of papers has appeared in 
which the method of dispersion relations is used 
for the derivation of approximate equations for 
the Green's function, Thus, Mandel'shtam4 ob­
tained an approximate equation from the disper­
sion relations for the amplitude of scattering of 
a meson by a nucleon. In the work of Drell and 
Zacharias en, 5 an attempt was undertaken at the 

determination of the approximate equation for the 
vertex part in quantum electrodynamics following 
from the dispersion relations (form factor of the 
electron). However, the basic results obtained in 
this research have raised objections.* 

In the present research an attempt has been 
made at a more systematic analysis of quantum 
electrodynamics from the point of view of the 
dispersion relations. Inasmuch as spectral rep­
resentations have been well studied only for the 
simplest Green's function, and also because of 
the extraordinary difficulties which arise in the 
calculation of higher Green's functions, we have 
limited ourselves to a discussion of the lowest 
approximation in the dispersion equations which 
contains only the Green's function of the photon 
and vertex part. The principal unsolved question 
today in such an approach is thus the considera­
tion and estimation of the contribution of higher 
approximations, i.e., two-particle and more com­
plicated Green's functions. 

The choice of quantum electrodynamics is not 
accidental. First, there enters only a single con­
stant here -the renormalized charge of the elec­
tron and the well-known boundary conditions -
agreement with perturbation theory at low ener­
gies. Second, in the first stage of the investigation 
we can consider the interaction of photons only 
with the electron-positron field and disregard 
other particles (the "pure" quantum electrody­
namics). 

In the setting up of the dispersion relations, 

*For details see below, Sec. 3 .. 
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we start out from the "nonsubtraction" procedure.* 
A formulation is given in Sec. 2 of the dispersion 
relations and the boundary conditions in quantum 
electrodynamics. In Sec. 3, we have investigated 
the asymptotic solution of a set of equations for 
the photon Green's function and vertex part in the 
simplest approximation. A discussion of the re­
sults obtained is given in Sec. 4. Appendices are 
included at the end of the paper. 

2. DERIVATION OF THE DISPERSION RELATIONS 

Derivation of the dispersion relations can be 
divided conditionally into three steps: I -the fun­
damental dispersion relations; II -an expression 
of the anti-Hermitian part of the spectral functions 
in terms of other amplitudes; III- the finding of 
reasonable boundary conditions. 

It is natural to begin this process with the sim­
plest single particle Green's function. The disper­
sion relations for the Green's function of the pho­
ton (the Kallen-Lehman theorem6 ) are well known:t 

00 

D 2 ----
1 ~ p (q'2) dq'2 

( q ) - q2 + q'2 _ q" -- ie • (1) 
0 

The longitudinal part of Dt.uA q) is chosen equal 
to zero; in this case, 

(2) 

By making use of the equation for the Heisenberg 
operators 

0 A.,_ (x) = j~-< (x) 

and decomposition over the whole sett ( unitarity) 
one can express the spectral function p( q2 ) in 
terms of the amplitude of other processes. 

p (q2)= <2;l" Sp (q\ Y 2J (0 I i~-t (0) I n><nl iv (O)J O)o (p,-q). (3) 
n 

Equations (1) and (3) give the desired equation for 

Dllv· 
Similarly, one can write down the dispersion re­

lation for the Green's function of the electron. How­
ever, we shall not do this, inasmuch as it is not 
needed in what follows. 

In order to extend the chain of equations, it is 
necessary to write down the dispersion relation 
for the matrix elements < 0 I jll ( 0 ) I n >, which 

*In connection with the "nonsubtraction" procedure see, 
for example, reference 5 (see also below). 

tThese dispersion relations are obtained by starting out 
from the "nonsubtraction" procedure, i.e., under the assumption 
that D( q2)-+ 0 for I q2 J -+ "". In our research the metric q2 == % - q2 

is used throughout. 
tBy way of the entire system one can with equal right make 

use of the states Jnin > and \nout >, which correspond to inci­
dent and diverging waves. 

are on the right side of (3). The matrix element 
<ljll(O) IP+• p_>, where IP+• P-> is the state 
electron + positron, can be represented in the form 

(0 I i:< (0) I p+, p_) = u+ (p+) AtJ. (p_+' p_) u_ (p_), 

AtJ. (p+, p_) =- &:JI(q2) + c,,vqJ2 (q2), q = P+ + p_. (4) 

from consideration of relativistic and gauge invari:­
ance. Here, u± are solutions of the Dirac equation 
for the positron and electron, respectively; 

(J) ± m) u± (p) = 0, y = ~~. 10 = ~ 
Po = E (p) = + (P2 + tn2 )'1•, cw, = (1~-<lv -&vi"); 

F 1 ( q2 ) and F 2 ( q2 ) are invariant functions which 
characterize the charge distribution and the mag­
netic moment of the electron. The quantity All is 
connected with the vertex function r v for p~ = p~ 
=m2: 

u+A.,_ (p+, p_) u = - U-t-I'v (p+, p_ u_. D/J.V (q) q2 • (5) 

We emphasize that there is no necessity of taking 
r ll into consideration. First, p( q2 ) [see Eq. (3)] 
is easily expressed* directly in terms of All; sec­
ond, inasmuch as r ll in x space is not directly 
connected with the T product of the Heisenberg 
operators, the anti-Hermitian part of the vertex 
function can only be expressed indirectly in terms 
of the amplitude of other processes. 

Up to the present time the dispersion relations 
for Fi ( q2 ) have not been rigorously established. 
In the general case they can be shown in terms of 
q2 under the condition Pi < 0. t In the physical 
region p~ - m 2 ( p~ :s m 2 ) there is a proof of the 
dispersion relations in any approximation of per­
turbation theory. 7 We shall start out from the 
validity of the following dispersion relation (for 
P~ :s m2 ): 

(6) 

In the derivation of (6), in addition to a knowledge 
of the analytic properties of Fi ( q2 ) with respect 
to q2, it is assumed that Fi ( q2 ) - 0 for I q2 l 
- oo • t In this assumption is included the basic 
idea of the nonsubtraction procedure of Chew in 
the theory of dispersion relations. We note that 
the vanishing of Fi ( q2 ) is the necessary condi­
tion for the finiteness of the charge renormaliza-

*See also Sec. 4. 
tThe difficulty with analytic continuation in the "physical" 

region p2±-+ m2 has not been overcome.• 
Hn the opposite case (if Fi (q2 ) = const, or increases more 

slowly than lq2 \ for Jq2 J-+ oo) the dispersion relations will be: 
00 

p, (q2)- F; (0) c~ (q" I n) ~ Im F; [q' 2 (q'' (q' 2 - q2 -- ie))J-1 dq'"· 
u 
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tion (i.e., the convergence of the integral 
J p( q2) dq2). 

The expression for Im Fi ( q2), which plays 
the role of spectral functions, can be found in 
the following fashion. We write: 

(O jj1, (O) 1 p+, p_> =- ~ u+ (p+) (ivx- m) 

X( o I T4 (x) ~ (x') j,. (0) 1 0) (ivx· + m) u_ (pJ 

(7) 

The corresponding expression for A/l(p+, p_) is 
obtained if we omit the "coverings" u+ and u_ 
in (7). Noting that 

'loA: (- p_, - p_,) 'lo =- \ (iV x-m) (0 I T4 (x) ~ (x') 
" 

>< j 1, (0}! 0) (iV,· + m) exp (- ip+x- ip_x') d4xd4x', (8) 

where T denotes the anti-product, and 1/J (x) is 
the Heisenberg operator of the electric field, we 
find 

(2if1u+ (p+) (AIL (p+, p_) -yoA:(- p_,-- p+)yo) 

X u_(p_)= u+ (p.) (T[L Im f1 (q2 ) 

+ cr[.tvqv Im F2 (q2)) u_ (p_) = + ~ u+ (p+) (iV X- m) 

x (0 I [j[.t (0), 4 (x)L I p_) exp (- ip+x)d4x 

= f (2rt)4 2} o (Pn- P+-P-) (0 I j:L (0) In) 
n 

x <nlu+(p+) 71 (0)Ip_), 

'Yj (x) == (iV -- m) y (x). (9)* 

Equations (6) and (9) are the desired dispersion 
equations for < 0 I j/l( 0) I P+, P- > · 

Equations (1), (3), (6) and (9) should be supple­
mented by dispersion equations for the more com­
plicated matrix elements < 0 I j/l I n > and 
< n I u+ 71( 0) I p_ >, which appear on the right hand 
side of (3) and (9). In principle, an infinite set of 
equations is obtained for all possible amplitudes. 
The difficulties that arise in this course were al­
ready noted in the introduction. In practice one 
always deals with a "broken" system of equations, 
in which amplitudes with a number of particles 
greater than some given value are discarded. t 
In the solution of such a system, the problem arises 
as to reasonable boundary conditions- In quantum 
electrodynamics, it is natural to assume for the 
boundary conditions 

*The second term of the anticommutator does not make any 
contribution, since p~ = + (p~ = m2)'12 > 0. 

tin the nonrelativistic region in mesodynamics, a similar 
device is used in the derivation of the Low equation! Here 
there is also a formal analogy with the Tamm-Dancoff method, 10 

where the cutoff is by the number of virtual particles. 

1 ( e2' e 1 F2(0J = -;rr; ~)im = -yn:.~.. (10) 

where e is the renormalized charge and b..il is 
the anomalous magnetic moment of the electron. 
It is seen that in the lowest approximation, which 
was considered in the present work (see Sec. 3 ), 
the condition (10) is insufficient for a unique de­
termination -of the solution [because of the homo­
geneity of the equation for Fi ( q2)]. 

As an additional condition we shall require 
agreement with perturbation theory for e2 -- 0. 

3. INVESTIGATION OF THE SIMPLEST APPROX­
IMATION 

We shall neglect on the right side of (3) and (9) 
all matrix elements with a number of particles in 
the intermediate state greater than two. Then 

p (q2) = 3 (~r.)3 Sp ~ d4q+d4q_6 (q+) 8 (q'!__) o (q~-m2) 4q+q'!__ 

x o(q: -m2)o(q+-i-q_-q) 

u+ (p+) {"[,. Im f 1 (q2 ) + cr1Lvqvf2 (q 2 )} u_ (p_) = 

= .; ('1 )2 \ d4q+d4q_O (q+) B (q'!__) o (q;_-, m2 ) 
- ..:.'TC .; 

X o (q:_- m2)4q0,q'!__ o (q+ + q_- P+- PJ 

(11) 

X (0 I j[.t (0) I q+, q_) (q_, q+ I U+'ll (0) I p_). (12) 

Together with (1) and (6), these relations form 
the simplest set of dispersion relations in which, 
in addition to the Green's function of the photon 
Dilv and the matrix element < 0 I jill q+, _q_ >, 
there also enters into (12) the exact matnx ele­
ment <q_, q+ I u+(P+) 11 ( 0) P- > of the scattering 
of the electron by a positron. In order to obtain 
a closed system, it is necessary to attempt to ex­
press <q_, q+ lu+7J I p_ > in terms of Dilv and 
< 0 I j/l I q+, q_ >. This can be done _approximately 
if we limit ourselves in the expressiOn for 
< q_' q+ I u+ 11 I P- > to the first irreducible Feyn­
man diagram, pictured in the drawing, where the 
corresponding exact vertex functions r il are 
inserted at the junction, while the wa'vy line cor­
responds to D/lV' 

We note that the conditions (9) are violated, gen­
erally speaking, in the approximate equation (12). 
Satisfaction of these conditions in each given ap­
proximation can be guaranteed if in (12), in place 
of the right hand part, we take the half sum of the 
matrix elements corresponding to solutions with 
diverging and converging waves (see footnote ton 
page 969). 
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q+ P+ 

q_ §( p_ ~ q_ p_ 

Applying this rule to (12), and taking (5) into 
account, we obtain in the given approximation 
- 1 
u + (p+) (lfJ. Im F 1 (q2 ) + crfJ.vCJv Im F 2 (q2 )) U_ (p_) = 8" 2 

where the notation used is 

Av = jvf1 (k2) + u:"vkJ2 (/l2), 

A~= lfJ.f~ (q2) + ufJ.vqJ; (q 2), 

k=p+-q+=q_-p_. (14) 

In the work of Drell and Zachariasen, 5 the approxi­
mate equation for the spectral functions Fi ( q2) 
was investigated. This corresponds to considera­
tion only of the Born term in the matrix element 
< q_, q+ I u+ 1J ( 0 ) I p_ > of the scattering of the 
electron by a positron. However, it is not diffi­
cult to establish the fact that the expression ob­
tained by them for Im Fi ( q2 ) is wrong. Actually, 
setting Av = eyv and D ( q2) q2 = -1 in (14), and 
carrying out the necessary integrations, we find 
(omitting the "coverings" ) 

( 2\ ( ') \'1· lfJ. Im f 1 (A.)+ crw,CJv Im f 2 (i.) = !,;) 1- X) -
A-2 

r/R F (') R F . ) qvJ t ("- -1) ) d',L X ~ 1 e 1 t. _L e 2 ( ,, - • c- -- -
t\ ' m, 2 1..-2 . ,. 

~ 

(15) 

where for convenience the dimensionless quantity 
A. = q2 /2m2 has been introduced; F 1 ( q2) = F t( A.); 
F2(q2)m=F2(A.); ~ f'::l (m2-p2)/2m2; p~=p:=p2 
~ m2. Equation (15) differs from the similar equa­

tion (22) in reference 5 in that here the integral 
A.-2 J d~-t/ 1-1 appears in the first term on the right 

hind side instead of J+ 1 1d~-t in the expression 
-1 -JJ. 

of Drell and Zachariasen. 5 The reason for this 
divergence is most simply understood from the 
example of perturbation theory. If we compute 
Im F 1 in the first approximation of perturbation 
theory, then, because of the presence of the infra­
red catastrophe, we obtain different expressions 
depending on its capability for correction (see 
Appendix A ) ; if we define Im F 1 (A. ) as the limit 
of Im F1 (A., p2) for p2 -m2 in the region p2 

< m2, then we get (15). As p2 -m2 from the 
region p2 > m2, we obtain Eq. (22) of reference 
5.* However, for p2 ~ m2, Im F 1(A.) does not 
vanish everywhere in the spatially similar region 
A. < 0. Thus we can draw the important conclusion 
that the dispersion relations for Fi(A.) in quan­
tum electrodynamics in form (6) exist only for 
p~ and p:_ ~ m2. In the opposite case, integration 
in (6) must be carried out over all q #

2 from - co 

to +co. This completes our proof, inasmuch as 
Drell and Zacharias en on the one hand use dis­
persion relations in the form (6) and on the other 
hand calculate Im F 1 ( q2 ) , essentially as the 
limit of the region p2 > m 2. t The absence of a 
solution vanishing at infinity for F1(q2) (i.e., in 
contradiction with the nonsubtraction procedure) 
and the negative value for the mean square of the 
radius of the distribution of charge of the electron 
in reference 5 were brought about in just this way. 
It is also necessary to emphasize that the approxi­
mation corresponding to replacement of 
<q_, q+ lu+1J IP-> by the Born term [i.e., use of 
(15)] is scarcely valid. In this case, substitution 
of (15) in (6) leads to an integral equation for 
F 1 ( q2 ) which has a solution (corresponding to 
the perturbation theory for e2 -- 0 ) which falls 
off for q2 -- oo as ( q2 ) -1/2 (see Appendix B). 
Such a behavior points up the essential role of 
F 1 ( q2) in the neglected terms in the matrix ele­
ment < q_, q+ I u+ 1J I p_ > and the necessity of 
their calculation. Equation (13) again corresponds 
to an attempt to consider in first approximation 
the change in the Born term as q2 -- oo because 
of Fi(q2) and D~-tv(q). 

We now investigate the asymptotic solution of 
the set of integral nonlinear equations (1), (3), (6) 

and (9) as q2-- oo. For this purpose we make the 

*In order'to find the first approximation of perturbation 
theory it is necessary in (15) and (22) of reference 5 to set Re 
F, = e; Re F 2 = 0. 

tin fact, the infrared divergence of lm F i ( q2) is removed in 
reference 5 by the elimination of the scattering of the electtOn 
by the positron at small angles under the assumption that the 
minimum obtainable angle in the center-of-mass system does 
not depend on q2 • However, such a situation is qualitatively 
equivalent to the calculation of Im F (q2 ) in the region p2 ;:?; m2 • 
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assumption, first, that I D ( q2 ) q2 1 differs slightly 
from unity over the whole region of variation of 
q2; second,* that F 2( q2 ) falls off as I q2 1- oo not 
more slowly than ( q2 f 1. Then, neglecting terms in 
(11) and (13) which contain F 2( q2 ), we findt 

p (/-) = e i~,;~;,;l ( 1- f f' (1 + /.) 1 F1 (A) 12, fJ (i.) == 2m2p (q2), 
(16) 

" I ' ( 1' ) I (I ) 1' + 4 I . ')1 ' ;, o(t-)- /,-'2 1 ' + 'l(A-2) 2(1-)/f' ,, > 2 (17) 

w:Q.ere 
A-2 

I(!-) = ~~~2 ~ l F1 (- :.1.) 1
2df1., 

0 (18) 
), --:! 

I 2 (I.) = (A_: :.)2 ~ i Ft(~ :L) 12 :Ldfl-. 
0 

Substituting (17) in (6), we obtain an integral equa­
tion for F t( A. ) : 

where g (A.) = .Im F 1 (A. )/Re F 1 (A.) is obtained 
from (17). 

The formal, general solution of (19), which is 
finite at A.= 0, has the form11 

F1 (!-) = P (i:) (i--- 2)-n exp (rp (!-)), (20) 

(21) 

where P (A.) is a polynomial and n is an integer. 
Agreement with the renormalized perturbation 
theory for e2 - 0 is achieved by the choice n = 0 
and P ( A. ) = e. 

It is seen from (21) that if g (A.) is a nonvan­
ishing function for A. - - oo , then 

lim cp (!-) ~--:t-1 tan-1 g([ /, i) ln J f., I· (22) 
),-~-oo 

Therefore, if tan - 1 g (A.) - const > 0 for I A. I 
- oo, then, in accord with (20), .we obtain a vanish­
ing solution for F 1 (A.) with the asymptotic value 

Ft (!.)- e exp [- it-I"tan - 1 g (!/,I) In [i.[J. (23) 

On the other hand, it follows from (17) and (18) that 
if F 1 (A. ) ._... 0 as I A. I ._... oo , then 

"'For justification of the second assumption we can intro­
duce the same arguments as in reference 5, which are still 
more forceful in our case because of the presence of a vanish­
ing asymptotic value for F 1 (see below). 

tlnasmuch as the set of equations with account of F 2 is 
rather cumbersome and is not analyzed in the present work, we 
shall not write it out. 

), 

g(t..)~-s~~IF1 (-fl-)l 2 d~ ~const>O, (24) 
~ 

since in this case the terms "'11, I2 and A.p (A.) 
tend to zero with increase in A.. 

Now it is easy to find the asymptotic value of 
g(oo). We assume that g(oo) « 1, we replace 
tan -l g ( oo) in (23) by g ( oo), and then substitute 
(23) in (24). We obtain 

(25) 

The divergence in (25) as ~- 0 (the infrared 
catastrophe) arises from the fact that the scat­
tering amplitude < q_' q+ I u+ 1) I P- > of the elec­
tron on the positron becomes infinitely great for 
forward scattering. Strict elimination of the in­
frared divergence in the method of dispersion re­
lations lies outside the framework of our pres­
ent article, and will be investigated separately.* 
Assuming that ( 2/ 1f) g ( oo) ln C 1 « 1, we have 
from (25) 

The neglected terms have a maximum order of 
magnitude equal to ( 2/ 1r) g ( oo) ln ~ -l and are 
small for ( 2/ 1f) g ( oo ) ln C 1 « 1 and ( 2/ 1f) X 

g(oo) ln A.» 1. 
Finally, we obtain the following asymptotic 

solution of Eq. (19) for ( 2/ 1r) g ( oo) ln A. » 1. 

(26) 

(27) 

The most characteristic property of the vanish­
ing asymptote is the nonanalytic dependence on e 2 

for 1f-l(e2/4)112 ln A.» 1. We note also that in the 
region A.» 1, and (e2/8~)(ln A.) 2 « 1, F 1 (A.) 
differs slightly from e and one can replace 
tan-1g(A.) by g(A.); in this case, cp (A.) in (21) 
coincides with F 1 (A.), computed by perturbation 
theory (with accuracy to e3 ) and, consequently, 
the dependence of F 1 (A.) on A. in (20) is obtained 
in the same way as in the research of Abrikosov .12 

4. DISCUSSION OF RESULTS 

We shall first investigate Eqs. (1) and (16) on 
the basis of (27) for D (A.) = 2m2D ( q2 ). Substitu­
tion of (27) in (16) gives the following behavior for 
p (A.) in the region 1f-1(e2/4)1f2 ln A.» 1: 

p ()•) ;::::; (e2j l2it2/,) exp {- (e2/4)''· Jn "A}. (28) 

00 

The convergence of the integral J p (A.) dA. then 
0 

follows, and consequently the finiteness of the con-

*It is of interest to observe that in the approximation that 
we have considered, a solution also exists in the limitin~ 
case ~ ... 0. 
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stant of charge renormalization Z31 
00 

= ( 1 + J p (A.) dA.) in the given approximation. 
0 

Estimating z3 by means of the asymptoti<: ex-
pression (28) for p, we find 

z;;-l = 1 + (3:!t1 (e2/4)'h. (29) 

It is also not difficult to establish the fact that 
p (A.) in this approximation does not have any reso­
nance at ( e2 /12i!) ln A. ,..., 1, in contrast to the re­
suits of references 13 and 14 (see also below). 

As is well lmown from the dispersion relations 
(1) for D (A.), it follows that I A.D (A.) I as A. 
-- oo is smaller than Z31. We have obtained 
for Z3 1 the finite value (29) which differs slightly 
from unity, justifying the initial assumption that 
I A.D <A. > I ,..., 1 for I A. I - oo • * 

It is interesting to compare our results with the 
results of other researchers. Lehman, Symanzik 
and Zimmermann, 15 starting out from the disper­
sion relations for D (A.), found an important con­
dition which must be satisfied by the quantity 

(30) 

As is easy to prove, M (A.) is connected with the 
imaginary part of the polarization operator rr11v( q). 
Thus 

1tM (t•} = 1- Im 1t (!-)' rri-'V (A) = (oi-'V q2 - ql-'qv) 1t (!-). 

They have shown that if one considers (30) and (1) 
as the equation relative to p (A.) for a given func­
tion M (A.), then the solution of this equation 
exists only if 

(31) 

In the lowest approximation, M (A.) in quantum 
electrodynamics is expressed in terms of the ver­
tex parts 

M (/,) = (e2f121t 2 ) e (/,- 2) ( 1- 2/),.)'f, {(1 +A) 1 fi(A) / 2 

+ 4t- (t- + 4) 1 r 2 (t-) 12 - 6t- (r 1 U-) r; (t-) + r; (t-) r 2 (),.))}, 

(32) 

where r i (A.) are determined from the relation 

u+ (p+) r" (P+· p_) u_ (PJ= u+ (p+) (j"r 1 P-H a >tV qvf 2 {1-))u_ (p_). 

On the basis of (31) and (32), the authors of refer­
ence 15 drew a fundamental conclusion on the ne­
cessity of the vanishing of the vertex part with 
increase in A. for internal self-consistency of 
the theory. Inasmuch as F1 (A.) = D (A.) A.r 1 (A.) 
[see (5)] andfor A.- -oo IA.D(A.)I-Z31, we 
conclude that, in the approximation that we have 

*This permits us, in place of the set of equations for D(A) 
and F 1 (A), to limit ourselves to the initially asymptotic inves­
tigation of the equation only for F, (A). 

considered, r 1 (A.) falls off with increase of A. 
according to the same law as F 1 (A.). This guar­
antees satisfaction of the condition (31). 

In the works of Redmond and Uretsky13 and 
Bogolyubov, Logunov, and Shirkov, 14 a combination 
approach to the method of dispersion relations was 
employed, in which, besides the dispersion rela­
tions for obtaining a series of quantities in quan­
tum field theory, series determined by perturba­
tion theory were summed. The combination ap­
proach in the form in which it was formulated in 
these works, i.e., within the framework of single 
particle Green's functions only, possesses great 
ambiguity. The reasons for this ambiguity are 
discussed in reference 16; it is brought about 
principally by the fact that satisfaction of the dis­
persion relations for single particle Green's func­
tion is not a sufficient condition for fulfilling the 
requirements of causality and unitarity in the 
theory. 

The concrete results of references 13 and 14 
did not differ materially from ours. In the first 
place, although D (A.) in references 13 and 14 
does not possess non-physical poles, p (A.) main­
tains a resonance character of behavior in the re­
gion of the former pole [( e2 /12il) ln A. ,..., 1]. In 
the second place, the specific non-analytic depend­
ence of the superconducting type in D (A.) in ref­
erences 13 and 14 comes about from the use of the 
expression for p (A.) outside the region of its ap­
plicability. 

It is not without interest to note that if we set 
r1 (A.)= 1 in (32), and r2 (A.)= 0, then the formal 
solution of Eqs. (1) and (30) gives an expression 
for p (A.) which coincides with that found in the 
work of Landau, Abrikosov, and Khalatnikov.1 

In conclusion, we emphasize once more (see 
Sec. 1) that the most important problem in the 
investigation of "broken" dispersion equations 
(and in equal degree in the combination approach) 
is the calculation or even qualitative estimation of 
the role of higher approximations which include the 
more complicated matrix elements. In spite of the 
fact that corrections to the free Green's function of 
the photon in the simplest approximation turn out 
to be ,..., (e2/47r)1/2 [see (29)], it is still impossible 
to say anything definite about the presence of a 
small parameter of expansion in such an approach. 
It appears to us that the solution of these questions 
permits us to shed additional light on the problem 
of the internal closed nature of quantum electrody­
namics, and also to explain in what measure the 
method of dispersion relations is an escape from 
the framework of the Lagrangian formulation of 
quantum field theory. In equal measure this ap-
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plies to all other interactions. 

APPENDIX A 

Let us consider U:+ ( p+ ) r JL ( p+, p_ ) u_ (p_ ) ac­
cording to perturbation theory. For simplicity, we 
set p~ = p: = p2 ¢ m 2, q = p+ + p_; 

r~"(p+,pJ= 

e3 \ 1v(-P++k+m)jf.<(p_+k'+m)jvd4k 
i (L1t)4 J [(p+- k)2 - nz2 + ie)] [(p_ + k) 2 - nz2 + ie] (k•+ie;) · 

(A.1) 

Transforming the numerator with account of the 
"coverings" u+ and u_ ' we get 

U+iv (- p+ + k + m) lf.' (p_ + k + m) jvU_ 

= u+ [(- 2q2 + 4p2)'ff.< -2k r ... k- 2rJ<p+ + 2.PJrf.l.l u_. 
(A.2) 

Infrared divergence occurs only in the first 
term on the right in (A.2). We limit ourselves to 
the consideration of the contribution of this term 
alone. Carrying out integration over d4k in (A.1), 
we find 

X [x (p2 - q2 (1- !;)y)- (p"- m2)- isp. 

If we set rg(P+• p_) = 'YJ.Lrt(q2, p2 ), then for 
real q2 and p2, 

( ( ' .,, 
_ e3 A-1 ). 2 ) 1--2 2 2 
- ~ "--2 1----:;. In-~- for p _,. m. 

It is immediately seen from this expression that 
for p2 < m 2, lm r 1 ( q2, p2 ) vanishes if q2 < 4m2, 

and for p2 > m 2 and q2 < o, 
Im r ( z ") = ::'. g_2-2p't 1-4m')-';, In (1- 4p'tq•)•;, + 1 

1 q ' p 81t 167tjq21 \ q' (1 - 4p2;q•)';.- 1 ' 

i.e., it is different from zero and finite for p2 

- m 2 throughout the spatially similar region 
q2 < 0. Consequently, the dispersion relations in 
the form (6) exist only for p2 < m 2, which also 
supports our statement in Sec. 3. 

APPENDIX B 

Let us find the asymptote of F1(A.) from (15). 
Neglecting F2 (A.) and substituting in (21) for 
g (A.) the asymptotic value for I A. I - oo : g (A.) 
~ (e2/8.;) ln (A./0, we find 

F ('A) ~ ...!:._ f tan"' (e2(81t2) In (A.'/~) df..' 
1 ~ 7t ~ A.' (A' - A. - ie) 

2 

For (e2/8.;) ln (A./0 » 1 and IA.I-oo, the 
fundamental role in the integral (B.1) is played 
by A.' ,..., A.. Therefore 
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