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Small oscillations of a hot plasma contained by a magnetic field are treated by means of the 
kinetic equation in the "drift" approximation without the collision integral.1 Two waves can 
be excited when the propagation vector is in the plane perpendicular to the direction of the 
unperturbed magnetic field: a slow (drift) wave with a propagation velocity of the order of 
the mean drift velocity of the electrons (ions) in the unperturbed state, and a magneto­
acoustic wave. The first is found in an inhomogeneous plasma only. If certain relations 
obtain between the zeroes of the magnetic field gradients, the plasma density, and the tem­
perature, the drift current can cause amplification of these waves. Criteria for an insta­
bility of this kind are obtained. 

1. INTRODUCTION. FORMULATION OF THE 
PROBLEM 

n = ~ fdp.dvql, j = c [HxVp..L] / H 2-f7(p_1_- Pl\)curl~, 

p = H ~ p.fdp.dv'P. 

Maxwell's equations for the self-consistent 
field are 

IN this paper, which is the first part of a work on 
oscillations in an inhomogeneous plasma, we con­
sider the simplest geometric configuration for the 
unperturbed plasma: a straight pinch with an arbi­
trary distribution of longitudinal current. 

n; = ne (quasi -neutrality equation) (3) 

We will consider oscillations at frequencies much 
higher than the collision frequency but smaller than 
the ion Larmor frequency. All characteristic di­
mensions are assumed to be large compared with 
the Larmor radius of the ions (electrons). Under 
these conditions it is convenient to describe the 
behavior of the plasma in terms of the drift ap­
proximation, using the kinetic equation.1 

We introduce a cylindrical coordinate system 
for oscillations characterized by wave vectors 
which are transverse to the magnetic field (the 
magnetic field in the perturbed and unperturbed 
plasma is along cp ) • 

The kinetic equation is 
at a du'P 
at+ V(vdr.f) + av"' {f{ f= 0. (1) 

Here f ( Vcp, u, r, t) is the electron (ion) distri­
bution function, J.l is the magnetic moment of the 
electron (ion) and Vdr is the drift velocity, which 
is 

[ExH~ c 1-'· , em u; 
Vdr= c -- + -- [Hx VH]-1 ·eH• -,2 [rxH]. H 2 e H 2 

(2) 

The first term in Eq. (2) corresponds to the elec­
tric drift, the second to the diamagnetic drift, and 
the third to the "centrifugal" drift. 

1 aH ( curl E = -c Tt . 4) 

2. SMALL-OSCILLATION EQUATIONS 

We investigate the time behavior of small de­
partures from equilibrium. 

The equilibrium state is given by the equation 

--rHo=--- Ha P.fodflo 1 a 4"' d ( ~ ) 
r ar H0 dr 

(5) 

The zeroth current term j 0 is due to the motion 
of electrons with velocity 

(c/ eno) [HoX'V (P; + Pe)l Hij2• 

The ions are assumed to be fixed ( cf., for example, 
reference 2). We seek small corrections to the 
equilibrium quantities in the form 

A= A (r) exp {i (kz- wt)}. 

The equation for the perturbed distribution 
function is 

Here 
cmH~ cmv! E~ 

v.o ----+--+c-
dr - e H0 eHo r H0 ' 

(6) 

(7) 
The charge density and the current density are 

found from the distribution function (primes denote differentiation with respect to r). 
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The correction to the distribution function is 

_ !!_ [(k)' _ _!_ v'~' ~] (kq~ I e) H + icEz 
f1- fo H + H r H i)v k o · 

o o o '1' "'- vdr 
(8) 

Substituting f1 in Maxwell's equations we obtain 
thre6l equations for the three quantities Hcp, Er, 
and· E z. By means of simple transformations we 
eliminate Er and Hcp, obtaining a single second­
order differential equation for Ez, which is given 
here without the intermediate steps: 
d c2 (1 + 4na I H0) E~- i (w4nb I cHo) Ez k2 cz 
--H --HE 
dr V~ 0 (1 + 4na 1 Ho)- wz I k2 V~ V~ 0 z 

Ho (c2 IV~) E~- i (k2c4nb I wHo) Ez +- =0, 
' (1 + 4na I Ho)- w2 I k2 V~ 

(9) 

where 

a = 2po + Ho '' \ ( .1.2_)' kcl-'2 I e d d 
Ho L..J J \ Ho w - kv~r 1-'- v~, 

b = icH0 ~I (Jy_)' 1-' dfi- dv9 , 
..::..J J Ho. w- kv~ 

(10) 

The summation is taken over ions and electrons. 
The integrals over JJ, in Eq. (10) are taken along 
the real axis if Im ( w) > 0 and along a contour 
such that the pole of the integrand lies between the 
real axis and the contour if Im ( w ) < 0, in agree­
ment with the rules of analytic continuatioa.3 

Thus, the problem of oscillations of an inhomo­
geneous plasma is reduced to that of finding the 
eigenvalues and eigenfunctions of a second-order 
differential equation with variable coefficients (9). 

3. DRIFT WAVES 

We consider oscillations whose frequencies 
satisfy the inequality w « kH0 N 4m0M ( corre­
spondingly, the phase velocity w/k « VA). 

Equation (9) can be simplified in this case: 

In Eq. (11) we have omitted the small parameter 
w2 I ( kV A )2 in the coefficient of the second deriva­
tive. 

Equation (11) is a generalized equation for the 
eigenvalues of a complex operator which is not 
self-adjoint. 

We write this equation in the form 

E"- [U (x, w, k) + iV (x, w, k)] E = 0, (12) 

where U and V are real functions. 
For solutions of Eq. (12) which converge in a 

bounded region of space we can write the integral 
conditions 

~IE'/ 2 dx+~U(x, w, k)l£21dx=0, 

~ V (x, w, k) IE /2 dx = 0, (13) 

where the integration is taken over the entire re­
gion occupied by the plasma. The second of these 
conditions can be realized only if the quantity 
V (x, w, k) passes through zero at some point in 
space. 

We consider space localized solutions for which 
U (x, w, k) passes through zero at the same point. 
The condition 

U (x0 , w, k) + iV (x0 , w, k) = 0 (14) 

plays the role of a dispersion equation which re­
lates w and k. 

Near this point Eq. (12) becomes an Airy equa­
tion with complex argument 

E" + (U~ + iV~) xE = 0 . 

We investigate the "high -gradient" case ( d/ dr) 0 

» 1/r. In this case the "dispersion equation" is 

b = icHo~ \ ( Hfoo'.)' fLdl~dv'P = 0. (15) 
J w -- kcEo I Ho + kci-'H~ I eHo 

It should be noted that although no curvature term 
appears in the dispersion equation, the derivation 
cannot be extended to the case r - oo because 
terms of order w/kV A• which have been omitted 
in obtaining Eq. (11), become important at large 
values of r. 

We now investigate Eq. (15). As an example we 
take f0M in the form f0M = n0o ( JJ, - Mo). (All the 
particles at any point have the same magnetic mo­
ment.) Here we have already carried out the in­
tegration over the longitudinal velocity (f0M = 

jf0 (JJ,, Vcp) dvcp ). 
Integrating with respect to JJ, in Eq. (14) we 

have 

Whence, an instability develops if 

~ ~ I (~)' > _;_ . 
1-'o Ho Ho 2 

(16) 

The case in which the Maxwellian distribution 

f noHo H o= ~e-~< ;r, 

is used in Eq. (15) has been investigated in refer­
ence 4. The instability criterion is of the form 

H~ I BnnoT o + iJ In To I iJ In H o 
O<- 1-iJin1'0 jiJinH0 <1. (17) 
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4. MAGNETOACOUSTIC WAVES 

We consider oscillations at frequencies w 
"'kVA· Omitting terms of order v~r/VA in Eq. 
(9) we obtain [ for high gradients ( d/ dr) 0 » 1 /r 1: 

.!!:__E:_ H (1 + 4rca I H0) E~- i (w4rcb I c/f0) E2 _ k2 c2 H E =O. 
dr V~ o (1 + 4rca I Ho)- w2 I k2V~ V~ o z (18) 

This is the equation for the magnetoacoustic 
waves. In the quasi-classical approximation ( Ez 
"' exp { i jkr dr} , where kr is a slowly varying 
function of r) we have 

(k2 + k~) (1 + 4rca/ H0) + w2 jV~ = 0. (19) 

We consider oscillations close to the boundary 
of the stability region (small buildup). The real 
part of Eq. (19) determines the frequency of the 
oscillations and the imaginary part determines 
the increment factor v ( w = w1 + iv). 

For a given value of H~ there is always a pole 
in one of the integrands. For small increments 
(v « w1 ) we have 

(' f-' 2 Uo I Hol' df.' = C f-' 2 (fo I Ho)' df.' + rei Res, 
J w -- k 1 v~, I J w - k I v~, I 

( f is the integral in the sense of the principal 
value). 

Separating real and imaginary parts in Eq. (19) 
we have 

w2 = (k~ + k2) ( v~ + 2 ~) ' 
3 { r f )'} / r Po )' 

V = :f rtW1 p.2 \ ~0 "'=k,p ~ H~ (20) 
1 dr 

In evaluating the integrals we have taken into ac­
count that for the magneto acoustic branch w » kv~r; 
v~r is the mean drift velocity. Thus the instability 
criterion v > 0 is of the form 

H~(fol Ho)' < 0. (21) 

For a Maxwellian distribution function: 

(22) 

The physical nature of this instability and the 
instability in the drift branch may be described as 
follows. 

Electrons which move with the unperturbed ve­
locity v~r• close to the phase velocity of the wave, 
drift towards points of zero gradient, acquiring en­
ergy by virtue of the interaction with the wave. If 
the condition in Eq. (21) is satisfied [or, corre-

spondingly, the condition in Eq. (1 7)] this interac­
tion leads to an instability (the electrons 'lose en­
ergy to the wave). The time required for the de­
velopment of this instability is large because in 
the case being considered. ( w » kV dr) the number 
of particles in resonance with the wave is an ex­
ponentially small quantity. 

The increments can become large when the 
mean velocity of the unperturbed electron drift 
is of the order of the velocity of the magneto­
acoustic wave. This situation can arise if the 
gradients are large at equilibrium: H018H0 /8r 
> R!l ( RH is the ion Larmor radius). How­
ever, in this case the drift approximation no 
longer applies for the ions. 

A simplified analysis of this case can be car­
ried out on the basis of a "cold" ion model ( Ti 
« Te)· In this case, Eq. (18) with Ti = 0 is 
valid up to characteristic dimensions of the order 
of the electron Larmor radius and the increments 
are 

v = TtWl {P-2 (~0 )'} I ( p~ )'. (23) 
o "'•·= kv~r H 0 

(In this we assume that v « w1 since we are in­
terested in the stability boundaries. ) The plasma 
is unstable if 

(JinTe ("'~Ho_ 2)>~+ f.'tHo, 
jj 1 n H 0 T e 8rcnoT e T e 

!1-1 = I eVA H 0 I cH~ I· (24) 
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