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The density of protons of given angular momentum is computed from the experimental distri
bution of the total proton density. Spatial separation of nuclear shells is demonstrated using 
the distribution thus obtained. 

1. METHOD OF CALCULATION 

THE Thomas-Fermi statistical theory can be gen
eralized so as to give the distribution of density of 
fermions with angular momentum .1 

Expanding plane waves in eigenfunctions of the 
angular momentum, we have 

PI-' (r) 

p {r) = !!: p (r, r') = ;.i!;; hZ. ~ exp (ip (r- r') I h) dp 

K!L (r) 
1 oo I 

= 2nr L (2l + I) .) kJ~+'h (kr) dk, K~-' (r) = 27rPI-' (r) I h, 
1~o o (1) 

where P J-1. ( r) is the Fermi momentum and l is the 
angular momentum quantum number. 

From Eq. (1) it can be seen that if one introduces 

Ki-'(r) 

1 \' PI (r) = 2nr (2l + I) .) kJ~+'f, (kr) dk, (2) 
0 

such that 
00 

p {r) = ~ PI (r), (3) 
1=0 

then the p z( r) so defined is the density of fermions 
with given angular momentum l. From Eqs. (1) and 
(2) it is clear that knowing 

cleus, the difficult problem of the applicability of 
the Thomas-Fermi model to the nucleus can be par
tially avoided. The experimental density automatic
ally takes into account all characteristics of proton 
motion in the nucleus (type of nuclear force, influ
ence of neutrons, etc. ) . Considering that the ex
pansion of the plane waves in Eq. (2) is in terms 
of the exact eigenfunctions of the angular mom en
tum operator, one might expect the application of 
this formula in our calculation to be more success
ful than is the case in the usual statistical theory. 

We compare, for example, Eq. (2) with the for
mula derived by Hellmann through generalizing 
the statistical model of the atom by means of 
grouping electrons according to orbital momen
tum.3 Using Eq. (4), the formula of Hellmann for 
pz(r) has the form 

() =2!+ 1[(3 2 ( ))'/,_/(/+1)]'/, PI r 2n"r2 rt P r r2 , (5) 

In so far as imaginary values of pz( r) have no 
physical significance, for l ,.; 0, p z( r) is non
zero in some interval r 1 < r < r 2, where r 1 and 
r 2 are roots of the quantity under the square root 
in Eq. (5). For the case of l = 0, we have 

(6) 

where for r - 0 we have p0( r) "' r - 5/ 2 in the 
'' atomic case and Po ( r) "' r - 2 in the nuclear case. 

(4) In our case, for l = 0 the integration in Eq. (2) can 
from the distribution of total density p ( r), it is be performed, and we have 

possible to calculate pz( r) for arbitrary l = 0, 1, Po (r) = ( 2K~-< r _sin (2KIJr)) 14rt2r3. 
2,... Equation (2) can be used to calculate the dis- , 

(7) 

tribution of protons with angular momentum in the Thus, for r- 0 we have p0(r)- K~/3~, and 
nucleus if one takes for the density p ( r) the ex- comparison with Eqs. (3) and (4) shows that only 
perimental values obtained from the experiments protons with l = 0 can be at the origin, as should 
on electron scattering by nuclei. 2 be the case. For large r, Eqs. (6) and (7) prac-

In this case, since we do not solve the complete tically coincide. From analysis of Eq. (2) for 
dynamical problem of motion of nucleons in the nu- l ,.; 0, it follows that p z( r) - 0 for r - 0 and 
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has finite real values for arbitrary 0 < r < oo 

[in contradistinction to Eq. (5)]. This is in agree
ment with the behavior of pz( r) expected from 
quantum mechanical considerations. 

2. DISTRIBUTION OF PROTON DENSITY WITH 
ANGULAR MOMENTUM AND SPATIAL DIS
TRIBUTION OF SHELLS IN THE NUCLEUS 

We now apply Eq. (2) to calculate pz( r) for 
protons in a spherically symmetrical nucleus with 
p(r) in the form of a Fermi distribution, 

p(r)=ro[I +exp(r-;;c)r, (8) 

where the coefficients c and b are determined 
from the experiments of Hofstadter et al., 2 

c = ( 1.07 ± 0.02) A'1•. 10-13 em, 

b = (0.5455 + 0.0682) .J0-13 em, (9) 

and Po is found by normalizing the total charge to 
Z protons in the nucleus. 

From Eq. (2) we obtain for the number of protons 
Z z in states with a given l 

00 

Zz = 47t ~ r2 pz (r) dr. 
0 

(10) 

Comparison of numerical values obtained by inte
grating Eqs. (2) and (10) with empirical values is 
shown in Table I for the particular case of AuW. 
Instead of the parameters in Eq. (9) we here em
ploy the actual experimental values of Hofstadter's 
parameters Po= 0.68 x 1038 cm-3, c = 6.38 x 10-13 

em, b = 0.528 x 10-13 em. The corresponding den
sity distributions pz( r) are shown in Fig. 1. 

From Table I it can be seen that the values of 
Zz agree, in general, with the corresponding val
ues from the shell model, making it possible to 
assess the correctness of the given p z( r). In the 
final column, the numbers of protons of given l 
present in the surface of the nucleus ( 0. 9 Po :::: p ( r) 

TABLE I. Number of protons 
Zz with given l for Au~~7 

... 
Ul .. 

,~~ ... 1'0(/J-~~ a !:: .... s ., 1 .. ., c: ... ., ., 
:!4>- Zz ,.bll --e~~ ~u~~~ 
gf§§ "' ., 0():2 ~·~·.-!..cell ., ... 

<S ... z.S ~~~ :stu:~~ < .... o Zo.o . .-~ ..... 

0 1 5.65 6 6 1.55 
1 I 12.48 12 12 4.66 
2 16.97 17 20 7.61 
3 17.93 18 14 9.91 
4 15.6 16 18 9.63 
5 

I 
9.01 9 9 6.03 

6 1.271 1 0 0.49 

0 2 3 4 S G 7 r/t; 
FIG. 1. Distribution of proton density p1(r) with angular 

momentum l for Au~:7 • 

:::: 0.1 p0 ) are given. From Fig. 1 it can be seen that 
the behavior found for pz( r) corresponds to that 
expected from quantum mechanical calculations. 
Analogous results have been obtained for other 
nuclei. 

We now analyze how the distribution of radial 
proton density p z( r) r 2 in states of given l 
changes with changing number of protons Z in 
the nucleus. The relevant curves for l = 0 and 
l = 1 are given in Figs. 2 and 3. Let us consider, 
for example, Fig. 3. Analysis of the change in 
density from Li~ ( Zt = 1.05) to sU ( Zt = 6.12) 
shows that the maximum density gradually in
creases, the maximum remaining at the same 
distance from the center, and the quantity 
pz(r) r 2/Zz for arbitrary r does not depend upon 

FIG. 2. Dependence of proton radial density 
p 1 (r) i' on Z for l = 0. For light nuclei (up to 
Ca~~) the experimental parameters c and b were 
employed in Eq. (8) for p(r). For heavy nuclei, 
c and b were obtained from Eq. (9). The num
bers in parentheses after the nucleus give the 
number of protons found in the data with given 
l in the indicated nucleus. 
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FIG. 3. Dependence of the proton radial 
density p l (r) r2 on Z for the case of l = 1. 

TABLE II. Comparison of the number of 
protons Zz in filled subshells with the 

Goeppert-Mayer scheme 

z1 in this work zl according to Mayer 

first second first second 
sub shell subshell sub shell sub shell 

0 =2 ""2 2 2 
1 =6 ~6 6 6 

Z. After st~ the maximum stops growing with in
creasing Z, the left part of p z( r) r 2 stops chang
ing, and a deformation in the right part of the curve 
sets in. Such a behavior of the radial density indi
cates that the first subshell is filled in the region 
Z = 15 (Z1 ~ 6). The deformation of the right part 
continues growing until near Ndlt2 ( Z1 ~ 12) a sec
ond maximum arises; i.e., a second subshell is ap
parently full. An analogous behavior of the curve 
continues further. The total numbers of protons 
in filled subshells, as follow from Figs. 2 and 3, 
and their comparison with the Goeppert-Mayer 
scheme are shown in Table II. 

Thus, the semi-statistical way of considering 
the nucleus employed by us makes it possible not 
only to obtain information about the shell structure 

in the nucleus, but also to show the spatial_ distri
bution of the shells in the region of their principal 
maxima (by calculating the distribution curves for 
the preceding subs hells ) . In particular, these dis
tributions show that both the form and area of a com
pletely filled subshell remain practically unchanged 
with the growth of further nucleon shells. Analyses 
of other distributions of total charge (for example, 
references 4 and 5) also· show that shell structure 
arises; however, less satisfactory agreement with 
the Goeppert-Mayer scheme is obtained. 
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