ISOTOPIC MASSES AND BINDING ENERGIES OF NUCLEI FOR MASSES BETWEEN 186 AND 196

R. A. DEMIRKHANOV, T. I. GUTKIN, and V. V. DOROKHOV

Submitted to JETP editor June 4, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 1217-1224 (November, 1959)

Values of the masses and binding energies are presented for the nuclei of isotopes of osmium, iridium, platinum, gold, and mercury. The masses were measured on a mass-spectrograph possessing a resolving power of 60,000 - 80,000. The isotope masses were derived from doublets by direct comparison with the masses of corresponding organic compounds. The masses of 18 stable isotopes were measured and the masses of 18 radioactive isotopes were computed. The data thus obtained were used to evaluate the binding energy of nuclei, the binding energy per nucleon (E/A), the binding energies of the last neutron and proton (B_n and B_p) and the pair energies of neutrons and protons (P_n and P_p). For N = 116, the binding energy of nuclei has been found to vary in a nonmonotonous manner for both odd and even values of Z.

INTRODUCTION

THE masses of isotopes and the coupling energies of nucleons in the nucleus have previously¹ been measured in the region of magic numbers up to 82 protons and 126 neutrons. In the present research, a second series of measurements has been carried out in the mass range $186 \le M \le 201$. Measurement of the masses of mercury, gold, platinum, iridium and osmium isotopes was carried out on a mass spectrograph described previously,² with a resolving power of 60,000 - 80,000. The measurements were made by means of doublets. A doublet pair was formed from a given isotope with a corresponding organic compound of type C_nH_m , $C_nH_mN_p$ or $C_nH_mO_k$. For high resolving power of the apparatus and dispersion calculations of high accuracy (~ 10^5), this guaranteed a high accuracy of measurement.

Such a method of measurement makes it possible to determine the mass of the nucleus of a given isotope, avoiding intermediate measurements, making use only of the values of the masses of H¹, C¹², N¹⁴ and O¹⁶ which have been measured with sufficient accuracy previously.² Determination of the masses of the isotopes Os¹⁸⁶, Os¹⁸⁷, Os¹⁸⁸, Os¹⁸⁹, Ir¹⁹¹, Ir¹⁹³, Pt¹⁹² and Au¹⁹⁷ by the mass-spectrograph method has not been carried out up to the present time. The single research of Johnson and Bhanot, applying to the given mass range,³ was carried out on a mass spectrometer with a low resolving power (A_{max} ~ 14,000). In this work mass differences per unit mass were measured for stable isotopes with even Z in the range $64 \le Z \le 82$. The value of the isotopic masses was not given in reference 3. Other mass-spectrographic measurements^{4,5} were carried out for a small number of isotopes and have a very incomplete character. The values of masses computed in the work of Wapstra⁶ from the energy balance of nuclear reactions were obtained with significant error ($\sim 2-3$ mMu). In the calculation of the isotopic masses of heavy nuclei the error becomes so large that, as a supporting value, the mass of the isotope Pb²⁰⁸ was used in place of O¹⁶.⁷ With such a large error of measurement, the calculated values of the binding energy of the last neutron or proton do not permit one to make an unambiguous estimate of the nuclear structure.

Ions of the elements thus measured were obtained by introducing vapors of the metal into the gas discharge region of a plasma ion source by means of an evaporator of special construction. The corresponding organic compounds were also introduced into the gas discharge region in the same manner.

As a check for the absence of errors of measurement,⁸ determination of the isotopic masses in most cases was carried out with a check for internal consistency, including such cases in which the molecular weight of the organic compound was equal to the weight of the isotope under investigation. In some cases, in addition to this, control of the resultant measurements was obtained by measurement of masses of isotopes of a given element, using as a doublet the lines of isotopes with mass difference of unity.

In each case, the results of measurement were

obtained after analysis of 12 - 15 mass spectra with 4 - 6 photo plates.

MEASUREMENT OF ISOTOPIC MASSES

1. Osmium isotopes Os¹⁸⁶, Os¹⁸⁷, Os¹⁸⁸, Os¹⁸⁹ Os¹⁹⁰ and Os¹⁹². For all the osmium isotopes, the measurements were carried out with a check on internal consistency, while different doublet combinations were formed by use of different organic compounds and compounds of osmium. The osmium ions were obtained by introduction into the gas discharge region of a plasma ion source of vapors of OsO_4 . The organic compounds perylene ($C_{20}H_{12}$, M = 252) and terphenyl ($C_{18}H_{14}$, M = 230) were used both in molecular form and in the form of fragments of these compounds as the organic compounds for the formation of doublet pairs with ions Os, OsO, OsO₂, OsO₃ and OsO₄. Internal consistency for the masses of the isotopes Os^{186} , Os^{187} , Os^{189} and Os^{192} were determined from three independent doublets for each isotope, Os¹⁸⁸ from four and Os¹⁹⁰ from five doublets. The value of the mass of each isotope was computed with account taken of the "weight" of the measurement. The values of the doublets and the masses of the isotopes are given in Table I.

2. <u>Iridium isotopes Ir¹⁹¹ and Ir¹⁹³</u>. Iridium ions were obtained by evaporation of metallic iridium. For the formation of a doublet pair with the isotope Ir¹⁹¹, the splinter ($C_{15}H_{11}$, M = 191) of benzalacetophenone ($C_{15}H_{12}O$, M = 208) was used" and for the isotope Ir¹⁹³, the splinter ($C_{14}H_9O$, M = 193) of anthrone ($C_{14}H_{10}O$, M = 194). The values of the differences of masses of doublets and the values of the isotopic masses computed from these data are given in Table II.

3. Platinum isotopes Pt¹⁹², Pt¹⁹⁴, Pt¹⁹⁵, Pt¹⁹⁶ and Pt¹⁹⁸. The platinum ions were obtained by evaporation of metallic platinum with successive ionizations of the vapor in the discharge. Testing of internal consistency in the measurements of the isotopic masses of platinum was carried out by utilization of two different organic compounds for the formation of doublet pairs. As organic compounds, benzalphenylhydrazone ($C_{13}H_{12}N_2$, M = 196) was used in one case and a fragment of benzoin $(C_{14}H_{12}O_2, M = 212)$ in the other. The values of the mass differences of the doublet and the values of the isotopes are given in Table III. For comparison, data obtained from mass-spectrographic measurements of Hogg and Duckworth⁴ are also shown in the table.

4. Gold isotope Au¹⁹⁷. Measurement of the mass of the isotope Au¹⁹⁷ was carried out by comparison of the mass of the gold ion with the mass of benzanilide ($C_{13}H_{11}ON$, M = 197). The value of the doublet $C_{13}H_{11}ON-Au^{197}$ and of the mass of the gold isotope are given in Table II. Values of the masses of the isotope Au¹⁹⁷, computed in terms of Hg¹⁹⁸ and $C_{13}H_{10}ON$ (mass differences ~ 1). The mean value for Au¹⁹⁷ was computed with account of the "weight" of the measurements.

5. <u>Mercury isotopes Hg^{196} , Hg^{199} , Hg^{200} and Hg^{201} . In the present work, measurements of the mass of the isotope Hg^{196} were carried out and a test for the internal consistency of the masses of the isotopes Hg^{199} , Hg^{200} and Hg^{201} was carried out; the measurements in the latter case were made in a previous research.¹ Use was made of</u>

Mass, A	Doublet	Volume of ΔM , mMu	Value of the mass of the isotope, Mu	Mean value of the mass, Mu
186	$\begin{array}{c} C_{18}H_{6}-O_{5}^{186}\\ O_{5}^{187}-O_{5}^{186}\\ C_{20}H_{10}-O_{5}^{186}O_{4} \end{array}$	$\begin{array}{r}92.157{\pm}0.150\\1002.797{\pm}0.150\\144.659{\pm}0.141\end{array}$	$\substack{186.013635\pm150\\186.012624\pm220\\186.013161\pm140}$	186.013246±300
187	$\begin{array}{c} C_{1_{3}}H_{7} - Os^{187} \\ Os^{188} - Os^{187} \\ C_{19}C^{13}H_{10} - Os^{187}O_{4} \end{array}$	$\begin{array}{r} 98.892 \pm 0.080 \\ 1000.253 \pm 0.150 \\ 146.481 \pm 0.170 \end{array}$	187.015402 ± 80 187.015858 ± 220 187.015010 ± 170	187.01537 0±230
188	$\begin{array}{c} C_{15}H_8 - OS^{188} \\ OS^{189} - OS^{188} \\ C_{18}H_4 - OS^{188}O_2 \\ C_{28}H_{12} - OS^{188}O_4 \end{array}$	$\begin{array}{r} 106.549 \pm 0.110 \\ 1002.420 \pm 0.150 \\ 84.948 \pm 0.320 \\ 158.472 \pm 0.070 \end{array}$	188.015887 ± 110 188.015973 ± 180 188.016380 ± 330 188.015632 ± 70	188.015 7 59 <u>+</u> 200
189	C ₁₅ H ₉ -O5 ¹⁸⁹ C ₁₈ H ₅ -O5 ¹⁸⁹ O ₂ C ₁₉ H ₉ -O5 ¹⁸⁹ O ₃	$\begin{array}{r}$	189.018342 ± 110 189.018521 ± 150 189.018317 ± 90	189.018362± 80
190	$\begin{array}{c} C_{15}H_{1,1} \\ O_{5}^{100} \\ O_{5}^{100} \\ O_{14}C^{13}H_{9} \\ O_{5}^{100} \\ C_{14}H_{9} \\ O_{5}^{100}O_{2} \\ C_{10}H_{1,1} \\ O_{5}^{100}O_{3} \end{array}$	$\begin{array}{c} 119,060 \pm 0.090 \\ 1000,944 \pm 0.150 \\ 115,092 \pm 0.080 \\ 98,638 \pm 0.064 \\ 135,210 \pm 0.240 \end{array}$	$\begin{array}{r} 190.019660 \pm 90 \\ 190.019337 \pm 160 \\ 190.019157 \pm 80 \\ 190.018974 \pm 60 \\ 190.018790 \pm 240 \end{array}$	190.019176 ±150
192	$C_{18}N_2H_3 - Os^{152}$ $C_{18}H_8 - Os^{152}O_2$ $C_{18}C^{13}H_1, - Os^{152}O_3$	$\begin{array}{c} 107.044 {\pm} 0.110 \\ 111.363 {\pm} 0.040 \\ 143.323 {\pm} 0.030 \end{array}$	$\begin{array}{r} 192.022806 \pm 110 \\ 192.022533 \pm 50 \\ 192.022490 \pm 40 \end{array}$	192.022529±120

TABLE I

Mass, A	Doublet	Value of ∆M, mMu	Value of the mass of the isotope, Mu	Mean value of the mass, Mu
191 193	$C_{18}H_{11}$ —Ir ¹⁹¹ $C_{14}H_9O$ —Ir ¹⁹³	$125.037 \pm 0.201 \\102.194 \pm 0.100$	$\frac{191.021825 \pm 202}{193.024564 \pm 104}$	191.021825 ± 202 193.024564 ± 104
197	C ₁₈ H ₁₁ ON—Au ¹⁰⁷ Hg ¹⁰⁸ —Au ¹⁹⁷ Au ¹⁹⁷ —C ₁₃ H ₁₉ ON	$\begin{array}{c} 117.572\pm0.200\\ 1000.709\pm0.240\\ 890.805\pm0.278\end{array}$	$\begin{array}{r} 197.029177{\pm}205\\ 197.029004{\pm}245\\ 197.029412{\pm}280\end{array}$	197.029181±120

TABLE II

TABLE III

Mass, A		Value of ΔM .	Value of the	Value of the isotopic masses of platinum, Mu			
	Doublet	mMu	mass, Mu	According to data of the pre- sent research	According to mass- spectrographic measurements ⁴		
192	C ₁₃ H ₈ N ₂ —Pt ¹⁹²	107.289 <u>+</u> 0.221	192,022561 <u>+</u> 225	192.022561±225	_		
19 4	C ₁₃ H ₁₀ N ₂ —Pt ¹⁹⁴ C ₁₄ H ₁₀ O—Pt ¹⁹⁴	$\substack{121.564 \pm 0.087 \\ 110.207 \pm 0.234}$	194.024570 ± 90 194.024693 ± 236	194.024604± 96	194.024100±600		
195	C ₁₃ H ₁₁ N ₂ —Pt ¹⁸⁵ C ₁₄ H ₁₁ O—Pt ¹⁸⁵	127.039 ± 0.100 115.924 ± 0.210	195.027237 ± 102 195.027118 ± 215	195.027199± 95	195,026500 <u>+</u> 600		
196	$C_{18}H_{12}N_2 - Pt^{198}$	134.529 <u>+</u> 0.111	196.027889±115	196.027889±115	196,026700±600		
198	Pt ¹⁹⁸ (по Hg ¹⁹⁸)	·	198.029880±200	198.029880±200	198.032700±600		

TABLE IV

Mass, A		Value of AM	Value of the	Value of the isotopic masses of mercury, Mu		
	Doublet	walue or ∆M, mMu	isotopic masses, Mu	According to data of the pre- sent research	According to mass- spectrographic measurements ⁵ (1958)	
196	C ₁₄ H ₁₂ O—Hg ¹⁹⁸ C ₁₃ H ₁₀ ON—Hg ¹⁹⁶	$\begin{vmatrix} 122,638\pm0,176\\ 110.251\pm0,020 \end{vmatrix}$	196.028546 ± 180 196.028356 ± 32	196.028362±185	196.02 7 260 <u>+</u> 230	
199	C ₁₆ H ₇ —Hg ¹⁹⁹ C ₁₉ H ₁₁ O ₂ —Hg ¹⁹⁹	85.994 ± 0.079 107.674 ± 0.038	199.032120 ± 82 199.031548 ± 45	199.031684 ± 460	199.030960± 100	
200	C ₁₆ H ₈ —Hg ²⁰⁰ C ₁₂ C ¹³ H ₁₁ O ₂ —Hg ²⁰⁰	94.354±0.043 110.913±0.111	200.031902 ± 47 200.031980 ± 115	200.031913± 68	200.0 3127 0± 80	
201	Hg ²⁰¹ —Hg ²⁰⁰ Hg ²⁰² —Hg ²⁰¹ C ₁₆ H ₉ —Hg ²⁰¹	$\begin{array}{r} 1002.254 \pm 0.021 \\ 1000.398 \pm 0.032 \\ 99.128 \pm 0.069 \end{array}$	201.034167 ± 71 201.034564 ± 62 201.035270 ± 83	201.0 346 0 3 ±220	201.033510± 420	

a splinter ($C_{14}H_{12}O$, M = 196) of benzoin ($C_{14}H_{12}O_2$, M = 212) and a splinter ($C_{13}H_{10}ON$, M = 196) of benzanilide ($C_{13}H_{11}ON$, M = 197) for the formation of doublet pairs with the isotope Hg¹⁹⁶. For a test of the internal consistency for the isotope Hg¹⁹⁹, the doublet $C_{13}H_{11}O_2$ -Hg¹⁹⁹ was measured in addition to the doublet $C_{16}H_7$ -Hg^{199 1} Similarly, additional measurements were carried out of the doublet $C_{12}C^{13}H_{11}O_2-Hg^{200}$, $Hg^{201}-Hg^{200}$ and $Hg^{202}-Hg^{201}$ were also carried out for the isotopes Hg^{200} and Hg^{201} ; in this case the organic compound benzoin ($C_{14}H_{12}O_2$, M = 212) and the mercury spectrum were employed. Masses of the isotopes Hg¹⁹⁶, Hg¹⁹⁹, Hg²⁰⁰ and Hg²⁰¹ were determined from these doublets with account of the "weight" of measurement. The value of the mass differences of the doublets and the values of the isotopic masses of mercury computed from these doublets are given in Table IV. For comparison, data are also

given in this table obtained from the mass-spectrographic measurements of Kerr and Duckworth.⁵

MEASUREMENT RESULTS

By comparing the values of the isotopic masses obtained in the present research with the corresponding data computed from nuclear reactions (see Table V), one can see that they are generally in agreement within the limits of error. However, this agreement is obtained at the cost of a very large error in the determination of the masses of the isotopes in terms of the values of Q obtained from nuclear reactions. In the final analysis, the mass of the isotope O^{16} was used as a supporting value for these isotopes, and consequently a large error of measurement is obtained as the result of the use of a large number of steps with corresponding values of Q. The most significant divergences in the

Isotope	Value of the isotopic mass M from the data of the present research, Mu	$\begin{array}{c} \mbox{Values of the isotopic} \\ \mbox{mass M}' \mbox{ according to} \\ \mbox{data from nuclear} \\ \mbox{reactions,}^6 \mbox{Mu} \end{array} \ \Delta = \mbox{M} - \\ \mbox{mMu} \end{array}$		
Os ¹⁸⁶	186 013246 + 200	186 009550+2300	3 696	
Os187	187.015370 ± 150	187.011045 ± 2200	4 325	
Os ¹⁸⁸	188,016058+140	188.014100 ± 2000	1.958	
Os ¹⁸⁹	189.018362 ± 50	189.018120 ± 2000	0.242	
Os ¹⁹⁰	190.019127 ± 110	190,017400+2000	1.727	
Os ¹⁹²	192.022470 ± 160	$192,022500 \pm 3000$	-0.030	
Ir ¹⁹¹	191.021825 ± 202	191.021240 ± 2100	0.585	
Ir ¹⁹³	193.024564 + 104	193.025200 + 2000	-0,636	
Pt ¹⁹²	192.022561 + 225	192,023100 + 2050	-0.539	
Pt ¹⁹⁴	194.024604 + 96	194,024000 + 1500	0.604	
Pt ¹⁹⁵	195.027199 + 95	195.026400 + 1500	0.799	
Pt ^{196.}	196.027889 + 115	196.026880 ± 1500	1.009	
Pt ¹⁹⁸	198.029880+200	198.029000 ± 2000	0.880	
Au ¹⁹⁷	197.029181 + 120	197.028470 ± 3000	0.717	
$\mathrm{Hg^{196}}$	196.028362 ± 185	196.027350 + 3010	1.012	
Hg ¹⁹⁹	199.031684 ± 460	199.030550 ± 3050	1,134	
Hg^{200}	200.031913 ± 68	200.031910 ± 3010	0.003	
Hg^{201}	201.034603 + 220	201.034000 + 3000	0.603	

TABLE V

values of the mass take place in the isotopes of osmium. For two of them $(Os^{186} \text{ and } Os^{187}, \text{ see}$ Table V), the difference in values exceeds twice the value of the very large error of nuclear measurements. According to existing evidence,⁹ the values of the masses of these isotopes $(Os^{186} \text{ and } Os^{187})$ given in the work of Wapstra,⁶ are unreliable. In addition to these isotopes, significant divergences also take place in the value of the masses of the isotopes Os^{188} , Os^{189} , Pt^{192} and Hg^{199} . The most accurate measurements in the region under consideration were made in the work of Johnson and Bhanot.³ Unfortunately, the work did not cover differences of masses with odd Z, and for elements with even Z several isotopes were not measured (Os^{192} , Pt^{192} , Hg^{198} , etc.). However, comparison of the mass differences obtained in this work with similar data of the present research and nuclear data computed directly from nuclear reactions shows that all comparable values are in excellent agreement within the limits of the errors of measurement. Quite a different picture is obtained for

comparison of the same quantities computed from the values of the mass given by nuclear data.⁶ The divergences in a number of cases exceed 2-2.5mMu. Analysis of the data of the present research and of reference 3 shows the error of measurements of the masses of the isotopes Os^{186} , Os^{187} , Os^{188} , Os^{189} , and Pt¹⁹² advanced in reference 6.

Additional measurements of the masses of the isotopes Hg^{199} , Hg^{200} , and Hg^{201} with "internal con-

sistency" for Hg^{200} made it possible to carry out a comparison of the values of Q obtained from nuclear reactions with the corresponding values computed according to the current measurements of isotopic masses. Thus, for example, the value for the mass of the isotope Hg^{200} , according to the data of the present work is equal to M (Hg^{200}) = 200.031913 ± 68 Mu. This quantity is in excellent

agreement with data obtained from nuclear reac-

Isotope	Ζ	N	Binding en- ergy of the nucleus,* Mev	Binding en- ergies of the nucleon, E/A, Mev	^B n, Mev∗	B _p , Mev*	P _n , Mev*	P _p , Mev*
0.1%		110	1494 449	7 0709				
Os186		110	1464.142	7.9792	6 200			
Os187		111	1490,000	7.9706	0,300		1 220	
Os ¹⁸⁸		112	1490.200	7.9094	6 224		1.000	
Os109	76	113	1504.477	7.9002	7 570		4 250	
Os191	10	114	1517 765	7 0464	5 700		1.300	
Os ¹⁹²		116	1525 751	7.9404	7 986		2 277	
Os198		117	1531 022	7 0328	5 271		2.211	
08-00			1001.022	1.0020	0.211			
Ir ¹⁹⁰		113	1510.015	7.9474		5.538		
Ir ¹⁹¹		114	1517.200	7,9435	7.185	5,144		
Ir ¹⁹²	77	115	1523,438	7,9346	6.238	5.673		ł
Ir ¹⁹³	11	116	1531.382	7,9346	7.944	5,631	1.706	
Ir ¹⁹⁴		117	1537.521	7,9254	6,139	6.499	0.906	
Ir ¹⁹⁵		118	1543.566	7.9157	6.045		0.000	
Pt192	1	114	1524.096	7.9380		6.896		1.752
Pt193		115	1530.549	7.9303	6.453	7.111		1.438
Pt194		116	1538.926	7,9326	8.377	7.544	1.924	1.913
Pt195		117	1544.876	7,9224	5.950	7,355		0.856
Pt196	78	118	1552.600	7,9214	7.724	9.034	1.774	
Pt197		119	1559.014	7.9138	6,414			
Pt198		120	1567.479	7.9166	8.465		2.051	
Pt199		121	1571.945	7.8992	4.466			
Au ¹⁹⁴		115	1535.590	7.9154		6.142		
Au ¹⁹⁵		116	1543.820	7.9170	8.230	4.894		
Au ¹⁹⁶		117	1550.902	7.9128	7.082	6.026		
Au ¹⁹⁷	-	118	1558.979	7.9136	8.077	6.379	0.995	
Au ¹⁹⁸	79	119	1565.357	7.9058	6.378	6.243		
Au ¹⁹⁹		120	1572.929	7.9042	7.572	5.450	1.194	
Au ²⁰⁰		121	1579.234	7,8962	6,305	7.289		
Au ²⁰¹		122	1585.896	7,8900	6,662		0.357	
Hg195		115	1541.861	7.9070		6.271		0.130
Hg196		116	1550.590	7,9112	8.729	6.770		1.876
Hg197		117	1558.000	7,9086	7.410	7.098		1.072
Hg198**		118	1566.100	7,9096	8.100	7.121	0.690	0.742
Hg199		119	1572,596	7,9025	6.496	7.239		0.896
Hg ²⁰⁰	80	120	1580,749	7.9037	8.153	7.820	1.657	2,370
Hg ²⁰¹		121	1586.610	7.8936	5.861	7.376		0.087
Hg ^{202**}	1	122	1594.685	7.8945	8.075	8.789	2.214	
Hg ^{203**}		123	1600.048	7.8820	5.363		1	
Hg ^{204**}		124	1607.614	7.8805	7.566		2.203	
Hg205**		125	1613,388	7,8702	5.774			
	i							

TABLE VI

*Errors in the values of the binding energy do not exceed 0.2 Mev and correspondingly in B_n and $B_p - 0.3$ Mev and P_n and $P_p - 0.4$ Mev **Data taken from reference 1.

tions according to which (see Table V) $M(Hg^{200})$ = 200.031910 ± 3010 Mu. Moreover, the mass difference $Hg^{202} - Hg^{200}$, obtained in the data of reference 1 and in the present work, is $\Delta M = 2.003039$ \pm 180, which is in good agreement with the corresponding value obtained from mass-spectrometric measurements by Johnson and Bhanot³ (ΔM = 2.002900 ± 150). Because of this we can consider that the value for the mass of Hg²⁰², obtained in reference 1, is sufficiently reliable. Moreover, there is good agreement between the values obtained from the cycle of mass-spectrographic measurements¹ and the data of nuclear reactions in the calculation of the mass of Tl²⁰³ by means of the reaction $Hg^{204}-Tl^{203}$. The agreement of the value for the mass of Tl²⁰³ obtained from the reaction $Tl^{203}(\gamma, n) Tl^{202}$ by means of the chain $Hg^{202} \rightarrow Tl^{202}$ \rightarrow Tl²⁰³ leads to a discrepancy for the mass of Tl²⁰³ \sim 1.7 mMu. Thus, joint consideration of nuclear and mass-spectrographic measurements leads to the conclusion that in all probability the assumed value of the quantity Q for the reaction $Tl^{203}(\gamma, n) Tl^{202 \ 10}$ is in error and it would be desirable to repeat the measurement of this quantity Q.

BINDING ENERGY OF NUCLEONS IN THE NUCLEUS

The mass values of the isotopes of osmium, iridium, platinum, gold and mercury obtained in the present research make possible a more accurate determination of the binding energy of nucleons in the nucleus over the mass range $186 \le M \le 200$. In addition to the results of the present research, the masses of 18 radioactive isotopes were computed by means of the values of Q obtained from nuclear reactions and beta decay energies. In this case the values of the masses of stable isotopes obtained in the present research were used as standardizing values.

Evidence on the general characteristics of nucleon binding can be obtained from a study of the binding energy per nucleon. The binding energy per nuclecon E/A is plotted in the drawing in Mev as a function of A. For completeness of the picture, the region of values of A is expanded over the range of values used in reference 1. In the drawing the solid lines connect the binding energies of stable (measured) isotopes with the same Z. The binding energies of nuclei with odd Z (Ir, Au, Tl) are denoted by circles and are connected with odd A of elements with even Z. As is seen

from the figure, a certain periodicity in the binding energy of stable nuclei in this mass region is indicated. The peculiarity noted in reference 1 of the isobaric pair of nuclei Hg^{204} and Pb^{204} is preserved and even expanded to the isobars Pt¹⁹⁸-Hg¹⁹⁸; $Pt^{196}-Hg^{196}$ and $Os^{192}-Pt^{192}$. In the isobaric pairs shown, the binding energies of the nucleus in which two protons are replaced by two neutrons is larger than in the opposite case. Values of the binding energy of nuclei, the binding energy of the last neutron B_n , of the last proton B_p , the pair energies of neutrons P_n and protons P_p are shown in Table VI. Analysis of the data of Table VI shows that nuclei having N = 116 for both even and odd Z possess an increased stability. This is evident from the values of B_n and P_n . In contrast to this, nuclei with N = 115 are distinguished by a lower value of coupling energy in comparison with other nuclei of odd N. For even-even nuclei, an increased value of the pair energies of protons Pp occurs for $N = 116 (\frac{116}{78}Pt^{194} \text{ and } \frac{116}{80}Hg^{196}).$

In conclusion the authors express their gratitude to E.E. Baroni and their co-workers K.A. Kovyrzina and V. M. Soĭfer for preparation of the organic compounds and also to M. I. Dzkuya and G. A. Dorokhova for help in the research.

¹Demirkhanov, Gutkin, and Dorokhov, JETP **35**, 917 (1958), Soviet Phys. JETP **8**, 639 (1959).

² Demirkhanov, Gutkin, Dorokhov, and Rudenko, Атомная энергия (Atomic Energy) **2**, 21 (1956).

³W. H. Johnson, Jr., and V. B. Bhanot, Phys. Rev. **107**, 1669 (1957).

⁴B. G. Hogg and H. E. Duckworth, Canad. J. Phys. **32**, 65 (1954).

⁵I. T. Kerr and H. E. Duckworth, Canad. J. Phys. **36**, 986 (1958).

⁶A. H. Wapstra, Physica **21**, 385 (1955).

⁷ I. R. Huizenga, Physica **21**, 410 (1955).

⁸ T. I. Gutkin, Приборы и техника эксперимента (Instrum. and Meas. Engg.) No. 5, **46** (1957).

⁹H. E. Duckworth, <u>Progress in Nuclear Physics</u> (Pergamon, N. Y., 1957); p. 138.

¹⁰ Sher, Halpern, and Mann, Phys. Rev. **84**, 387 (1951).

Translated by R. T. Beyer 250