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Expansions are obtained for the wave functions of a particle with spin s and for those of a 
system of two particles with arbitrary spins s 1 and s 2, in terms of the irreducible repre­
sentations of the homogeneous Lorentz group; this makes possible a relativistically invari­
ant classification of the states. For the invariant description of the polarization of free par­
ticles an expansion of the density matrix is found in terms of the irreducible representations 
of the Lorentz group. 

l. The finite-dimensional representations (tensor 
and spinor representations ) of the Lorentz group 
are widely used in quantum field theory. Since, 
however, the Lorentz group is not compact, there 
exists for it an entirely different class of represen­
tations, namely the infinite-dimensional represen­
tations. The application of the infinite-dimensional 
representations in the theory of elementary par­
ticles was first achieved in a paper by Ginzburg 
and Tamm.1 

The unitary representations of the Lorentz 
group were discovered almost simultaneously by 
several authors - Gel'fand and Na1mark, 2 Dirac, 3 

and Harish -Chandra 4 - but did not find any appli­
cations in physics for a long time thereafter. 

In 1955 Shapiro5 proposed and treated the prob­
lem of the expansion of the wave function of a free 
particle in terms of the irreducible representa­
tions of the Lorentz group. Such an expansion 
makes possible a relativistically invariant classi­
fication of the states of the particle in terms of 
the eigenvalues of the invariants of the homogene­
ous group: the ~cal1ar F =% MJ.tvMJ.tv and the 
pseudoscalar G = Y16 EJ.tvpa-MJ.tvMprr• where MJ.tv 
is the four-dimensional angular-momentum tensor: 

M~'-v = - i (p~'- a I apv- Pv a I ap~'-) + S,J.v· 

SJ.tv is the spin part of the four-dimensional angu­
lar momentum. Dolginov6 also treated this prob­
lem by another method. 

Later Chou Kuang-Chao and Zastavenko7 made 
improvements in Shapiro's expansion for particles 
with nonzero spin. It must be remarked, however, 
that the method they used involves extremely cum­
bersome calculations, since they did not use to its 
full extent the theory of the representations of the 
Lorentz group. 
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From the mathematical point of view the formu­
las obtained in references 5 and 7 make up an inte­
gral transformation, which, following reference 7, 
we shall call the "Shapiro transformation." In the 
present paper we begin with a simpler derivation 
of the Shapiro transformation for a free particle 
with arbitrary spin s; we then use an analogous 
method to study a system of two interacting par­
ticles. In the concluding part of the paper an ex­
pansion in irreducible parts is carried out for the 
density matrix of the free particle and the system 
of two particles; this is of importance for the de­
scription of polarization in the relativistic case. 

2. Let us consider a free particle with arbitrary 
spin s and mass K ( K ¢ 0 ) . The amplitude of the 
one-particle state (after second quantization) has 
the form 

(1) 

where, as usual, aa(P) is the operator for crea­
tion of a particle with momentum p and spin com­
ponent rr along the z axis, <P 0 is the vacuum 
amplitude, and cpry(p) are the corresponding Fock 
amplitudes. Here we must be exact about what we 
mean by the spin: for example, for particles with 
spin ~that obey the Dirac equation the spin oper­
ator is ordinarily taken to be !a. 8 But then there 
do not exist states with prescribed momentum p 
and definite spin component in any direction in 
space, unless the direction is that of the momentum 
itself. It will be more convenient for us to go over 
to the spin in the rest system, i.e., to introduce the 
operator Si = L(p)S~L- 1(p), where S~ is the spin 
operator in the rest system, which has the same 
properties as the spin in the nonrelativistic theory, 
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and L(p) is the pure Lorentz transformation* that 
gives the change from the rest system of the par­
ticle to the reference system in which it has the . 
momentum p: L(p)p0 =p, Po= (0, 0, 0, K). It is 
obvious that in the rest system the spin of the par­
ticle can be oriented in an arbitrary direction, and 
there exist states with momentum p and the spin 
component a along the z axis: 

<)lpa(X) = (21t)-'1'v 0 (p)e1 (px), Vo(P) =L(p)va(O), (2) 

where v a< 0 ) is the eigenfunction of the ordinary 
operator s~ in the rest system: S~va(O) 
= ava(O ). The field operator 1/J(x) is expanded 
in terms of the system of functions 1/Jpa( x), 
1/J[,a.(x): 

after which we can find the operators of the dy­
namical variables: the energy and momentum, and 
the angular momentum. Comparing them with the 
usual expressions, we find the commutation rule 
of the operators aa(P): 

[ao(P), ad;(p')] = x-1p0oaa•o(p-p') (3) 

(the left member must be the commutator for an in­
teger spin s and the anticommutator for half-in­
tegral s). 

We need to find the law of transformation of 
the Fock amplitudes cpa< p). For this purpose we 
apply an arbitrary transformation g of the proper 
Lorentz group to the probability amplitude for find­
ing the particle at the point x 

We here take into account the fact that va(P) 
transforms according to a finite-dimensional rep­
resentation Tso (P = s, Q = 0; for the notation 
see reference 9 ) : 

T gVa (p) = T g'Cso (Lp) Va (0) = 'tso (gLp) Va (0) 

a'=-s 

where we have introduced the rotation R(g, p): 

gLp = LgpR (g, p) 

(this is the so-called Thomas precession, if g 
itself is a pure Lorentz transformation), and 

(5) 

*Every transformation of the proper Lorentz group can be 
represented in the form g = u, Eu, , where u2 and u, are spatial 
rotations and E is the change to a reference system moving 
along the z axis. If u2 = u;-' we call g a pure Lorentz trans­
formation. 

where we use the condition that under rotations 
in the rest system the wave functions va(O) 
transform according to the irreducible represen­
tation of weight s of the rotation group (funda­
mental property of the spin s ) . From this we find 
how the Fock amplitudes transform:* 

s 

T f;''Pa (p) = ~ D~~· {R (g, g-lp)} 'Pa• (g-lp). (6) 
a'=-s 

It is clear from physical considerations that Eq. (6) 
must be a representation of the Lorentz group; for­
mally this follows from the group property of the 
rotations R: 

R (gl, g-;1P) R (g2. (glg2p P) = R (glg2. (g1g2r1 p). (7) 

It is also obvious that Eq. (6) is a unitary represen­
tation, because there is conservation of the total 
number of particles 

~ x;:P 2L I 'Po (p) 12; 

therefore it can be expanded in terms of the unitary 
irreducible representations of the Lorentz group, 
which are all infinite-dimensional10 •11 and are char­
acterized by two numbers m, p, which are con­
nected with the eigenvalues of the invariants: F 
= - [ 1 + !{ p2 - m 2 ) ] , G = - !imp. To find this ex­
pansion, let us go over from the wave function 
cpa ( p) to a new function Xa( g ) of the Lorentz 
transformation g: 

Xo (g)= ~ D~~ {R (g, p)} 'Po· (p), (8) 
o'=-S 

where 
p = g-1po, Po= (0, 0, 0, x). 

It follows from (6) that Xa(g) transforms by the 
regular representation of the Lorentz group: 

(9) 

(Here T g0 denotes the operator that acts on the 
function Xa< g) when the Lorentz transformation 
g0 is applied to the coordinates), and the expan­
sion of the regular representation in terms of the 
irreducible representations is known.10 Let us now 
find how Xa< g) depends on the left unitary operator. 
Since an arbitrary spatial rotation does not change 
the momentum in the rest system (up0 =Po), it 
follows from (7) that 

R (ug, (ugt1Po) = R (u, Po) R (g, g-1Po); 

the rotation R (u, Po) is determined from the 
equation uLp0 = Lup0R (u, Po), and since up0 = p 0, 

Lp0 = 1, we have R (u, Po) = u. Using the defini­
tion (8), we get 

*This formula was given without proof in reference 7. 
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x, (ug) = ~ D~'j. {R (ug, (ugt1 Po)} Cflo· (p) 
a'=-S 

= ~ D~~~ (u) f.0 , (g). (10) 
a'=~S 

The properties (9) and (10) are sufficient for the 
expansion of Xa( g) in terms of irreducible rep­
resentations. To accomplish it we use the analog 
of Plancherel's formula from reference 10. If 
x( g) is the regular representation of the Lorentz 
group, its expansion in terms of irreducible repre­
sentations has the form 

Kmp (z1 , z2) = ~ x (z-;-1kz2) oc;,.p (k) d[L1 (k), 

00 00 

X (g) = (2rrf4 ~ ~ dp (m2 + p2) ~ d[L (z) Kmp (z, z1) OCmp (k), 
m=--oo 0 

where zg = kz1; here (and often in what follows ) 
g denotes both some transformation of the proper 
Lorentz group and also the corresponding two­
rowed matrix b of its spinor representation; 
amp (b) is a function defined on the group of two­
rowed matrices b: 

CXmp (b) = J b22Jm+ip-2b;;m' 

for b = (bn bu) , det b = 1. 
b21 b •• 

Under transformations of the Lorentz group the 
function Kmp ( z1, z2) transforms by the irreduc­
ible (mp) representation with respect to its first 
argument z2, and its first argument z1 remains 
unchanged [the space of the representations con­
sists of the functions on the group of matrices 

z = ( ~ ~ ) ; for further details see references 5, 

11]. The representations (m, p) and (- m, - p) 
are equivalent, and therefore the expansion of x(g) 
involves only one of them ( p > 0). It will be more 
convenient for us to take as the space of the repre­
sentation the manifold of functions on the unitary 
group u; for this purpose let us introduce the 
matrices u1, u2 by the formula* z1 = k1u1, 

z2 = k2u2, and the new function 

Kmp (Ut. u2)= n:OC~p (ut) OCmp (u2) Kmp(Zt, z2) 

=n: ~ x (u-;--1 ku2) oc~P (k) d!J-1 (k). 

It transforms in the following way: 

ug0 = ku'. (11) 

This indeed means that Kmp ( u1, u) transforms by 

*Here k is a triangular matrix of the type 

( k 11 kk"), detk ~= k 11 k22 = 1; 
0 22 

u is a unitary matrix: 

the irreducible representation (mp) (with respect 
to its argument u). The expansion of the regular 
representation takes the form 

kmp (u~o u) = rr ~ x (u-;1ku) oc;,.P (k) d[Lz (k), 

X (g)= s r dp m•(~r ~ dul Kmp (ul, u) OCmp (k), (12) 
m=-ooo 

where u1g = ku. Let us now substitute in (12) the 
function Xa(g) instead of x(g) [cf. Eq. {8)]. It 
is well known that every matrix of the type k can 
be represented in the form k =yEt (for further 
details see reference 5 ) , where 

(in the spinor representation y corresponds to 
a rotation through the angle y around the z axis, 
and E to a Lorentz transformation along the z 
axis). Furthermore <:4lz{k) = 27l'c4l(y)dJ..t (E)dt, 
where dJ..t z ( k), dJ,.t ( y), c4l (E), dt are invariant 
measures* on the groups of matrices k, y, E, 
t. Substituting this in Eq. (12), we get 

Kmp (u1 u; cr) = 2n: 2 ~ Xo (u-1js~u)oc;,.P (rs~) dp .. (r) d[L (s) dC 

=7t2 ~ ~ dp .. (r) D~~- (uj1i) oc;,.p (r) ~ Xa' (s~u) oc;,.P (s) d!Jo (s) d~. 

Since atp ( y) = exp { imy /2 } , the integration 
over dJ,.t(y) gives oa',m/2n~>.m/2 (u11 ), from 
which there follows the selection rule: the wave 
function of a particle with spin s has as its com­
ponents the irreducible representations (m, p) 
in which m = -2s, -2s + 2, ... ,2s- 2, 2s. In 
the remaining integral we transform dJ,.t ( E ) dt. 

(,\-' ) 
*Let k = 0 ~ , where A, p. are arbitrary complex num-

bers; let us set A=A'+iA"', p.=p.'+ip.H, where.\',AH,p.',p.H 
are real. A left invariant measure on the subgroup of matrices 
k is an expression 

drt 1 (k) = w (A, rt) dA'dA"drt'drt", 

that satisfies the condition 

~ f (k) drt 1 (k) = ~ f (kok)drt1 (k) 

for any function f(k) that is integrable on the group of matrices 
k, and any fixed matrix k0 • Right invariant measure is defined 
analogously. It can be shown" that dp.1(k) = d.\' d.\"' dp.' d11"'. For 
the subgroups y, E, t;; the left and right invariant measures are 
the same. We define them as follows: 

d'{J ( e-i~/2 0 ) 
drt (j) = ~ for j= o ei~/2 , 

dA f (I/1- o) dp. {E) = J:' Or E = O. A • 

d~=,d~'d~" for~=(~ I)• ~=~'+i~". 
Here A is a real number, and t;; means simultaneously a definite 
type of two-rowed matrix and the complex number appearing in 
such a matrix. 



RELATIVISTIC TRANSFORMATIONS OF THE WAVE FUNCTIONS 797 

To do so we set p = ( E: ?;u) -1 p0; by a change of 
variables it can be shown that dp,(E:)dt = (A."/2K2) 
x d1>/p0, where A. = E:22 . Since a~p ( E: ) = A. -ip -2, 
we must express A. in terms of p and the param­
eters of the rotation u. It is easy to verify that for 
an arbitrary two-rowed matrix b of the spinor 
representation we have: I k22l 2 = I b21 12 + I b22 l2, 
if b = ku. Let us introduce a vector n0 of zero 
length with its space part directed along the z 
axis, n0 = ( 0, 0, 1, 1 ) , and calculate the scalar 
product: 

(no. gpo)= (gpo)a- (gPo)o = x (gao- goo). 

since Po = ( 0, 0, 0, K). The elements of the ma­
trix g are expressed in a known way in terms of 
the parameters of the corresponding matrix b of 
the spinor representation {see reference 11): 

gso = ~(I bul 2 + I b12l 2 -I b21l 2 - 1 bzz n 
goo=~(! bnl2+ I b1zl 2 + I b21J 2 -l- I b22 J2), 

from which we get 

I b21l 2 +I b22l2 =- x-1 (no, gpo)= I k22l2· 

In our case b = uLp, k = (E:t}-1, from which we 
have k22 =A. - 1. Therefore A. - 2 = - K- 1 (n0, uLpp0) 
= -K-1(u-1n0, p) = K-1[p0 - (p·n)]. Here the three­
dimensional vector n = u-1n0 has been introduced. 
We still have to express the auxiliary function 
Xa'(El;u) in terms of the Fock amplitude <Pa(P). 
For this purpose let us determine the rotation u 
from the condition uLp = (Et)-1u. It is well known 
that the representation of an arbitrary matrix b of 
the spinor representation in the form b = ku is 
ambiguous (see references 5 and 11 ). In the pres­
ent case, however, arg { ( E: t) - 1 h2 = 0 independ­
ently of the complex number ?;, and the rotation 
u is determined uniquely. Xa' ( E: tu) is connected 
with <Pa(P) by the formula (8), in which R (g, g-1p0 ) 

appears, with g = E:l;u. We have: 

gLp =E~ULp = U, 

that is, 

and 

Xa' (s~u) = :S D~~~ (u) lf!a (p). 
a=-s 

As the result we get the following formula: 

Since u1 does not ch ... ange under Lorentz transfor­
mations, instead of Kmp(u1, u; a) we can intro-

duce a function of only one argument u, which 
transforms according to the irreducible represen­
tation ( mp ) : 

' 41t3 
Kmp (ui> u; cr) = x D~~~12 (u;_-1) Cmp (u), 

s -1+iP/2 
c (u)- _1_ ,, I d3p ( Po- (pn)) o<s) (~) ( ) 

mp - 4m< L.J J Po x mj2,a U lfia P • 
a=-s (13) 

To find the inverse transformation we use the sec­
ond of the equations (12) 

00 00 

Xa (g) = (2nT4 ~ ~ dp (m2+ p2) ~ du/\mp (u1 , u; cr) 11m0 (k) 
m ==--·oo 0 

00 00 

= 4!x ~ ~dp(m2 +p2)~dUCmp(u)D~~;,a(u1)a,~P(k). 
m=-ooo 

Here we have gone over from integration over du1 
to integration over du (ug-1 = ku1 ); using (8), we 
easily get the final formula: 

00 

1 "' lfia (p) = 41cx LJ 
m=-oo 

-1-ip/2 
\ d (Po-(Pn) \ (s)' ~ X} U ~x-) Dmf2,a (u)Cmp (u). (14) 

Equations (13) and (14) give the Shapiro transfor­
mation for the wa.ve function of a free particle with 
spin s. Conservation of the norm also follows from 
(13) and (14): 

s 00 00 

~ ~d;: I tpa (p) 1
2 = ~ ~ dp (m2 +p2 ) ~ du 1 Cmp (u) 12 • (15) 

a=-s m=-00 0 

The rotation u that appears in (13) and (14) is 
defined by 

(16) 

(in the spinor representation). It is clear that u 
is a function of u and p. Formulas for the ex­
plicit expression of u in terms of u and p are 
given in the Appendix. 

3. Let us go on to the treatment of a system of 
two particles with spins s 1 and s 2, which can in­
teract with each other in some way. The Fock ex­
pansion of the state amplitude contains terms de­
scribing the motion of an arbitrary number of free 
particles. We consider only the very first of these 
(as to number of particles ) : 

By the same method as in Sec. 2, we find the trans­
formation law of the two-particle amplitude <Ps1s 2: 

Tglf!s,s, (plcrl; P2cr2) = "' o<s.>, {R (g, g-1p1)} D~:~, {R (g, g-1p2)} 
~ a a :a 

'' 

(17) 
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It is clear that (17) is a unitary transformation of 
the Lorentz group. We shall expand it in terms of 
irreducible representations, and thus obtain a rela­
tivistically invariant classification of the states of 
a system of two particles. 

Let us go over from the momenta p1, p2 of the 
individual particles to new variables: 

P = P1 + P2, q = (x2P1- X1P2) I h + x2)· 

The vector p is timelike, and in the case of two 
free particles is the energy-momentum of the 
center of mass. As an invariant variable we in­
troduce K2 = p2 = (p1 + p2 )2; K is the total mass 
in the center-of-mass system. Since the masses 
K1 and K2 of the particles are fixed, the wave 
function cp s 1 s 2 (p1 a1, p2a2) depends on six vari­
abies: p1, p2. Instead of them let us introduce 
the following six independent variables: p = p1 

+p2, K, 11 = q/jqj (unit vector). Thus 'Ps1s 2 
is converted into a function of p, K, 11: 

(18) 

and 

00 

~ a (x) dx ~ x~p ~ dfl. ~ I <Ps,s, (p, x, 'Y, cr1, 
K1-f-«2 a1o2 

where 
x2+x2 

a (x) = 4 ( ~ )22 2 [x2- (xl + x2)2]'/, [x2- (xl- x2)2]'1•' 
Xt X 2 X 

E=Vp2 +x2. 

Now let us use the same approach as in Sec. 2. 
Instead of 'Ps1s2 (p, K, v, a1, a2) we introduce a 
function on the Lorentz group g: 

Xs 1s1 (g, x, 'Y, 0"17 0"2} = 2: D<•d, {R (g, g-1P1c)} 
, ' a,o:l 

a1 o1 

(20) 

Here p = g-1 p0; Po = ( 0, 0, 0, K ); Pte and P2c 
are the momenta of the first and second particles 
in the center-of-mass system: 

Pte= (Pc'Y, (x2+xi- x~} I 2x], P2c = [- Pc'Y, (x2- x~ + x~) I 2x], 

Pc = i x-1 [x2 - (x1 + x2)2]'1• [x2- (x1- x2)2]'1•' 

Pte and p20 are completely determined if K and 
11 are given. From (17) we find that Xs1s 2 trans­
forms by the regular representation: 

We can also determine how Xs1s2 depends on a 
left unitary factor in g: 

(22) 

The properties (21) and (22) are sufficient for the 
expansion in irreducible representations. The cal­
culations are again based on the Plancherel formula 
(12), and are analogous to those carried out in Sec. 
2, though more cumbersome. We give only the final 
formulas: 

\ d3p • 
Cn>< (mpu) = ~ ~ E YJ (mpu, p, x, M) Cf~saC~~a,;s,a, 

MIJ;a 
o1o1a2a• 

X <Ps,s, (p, x, 'Y, cr~, cr~), 

00 00 

x ~ ~ dp (m2 +p2 ) ~ duY~ (mpu; p, x, 
m=-co o 

M) Cn><(mpu). 

(23) 

Here the index n on cnK ( mpu ) denotes a set of 
invariants: n = ( Z, s, J); l is the orbital angular 
momentum in the center-of-mass system, s is 
the total spin, and J is the total angular momen­
tum in this same system. cftlsa• etc., are Clebsch­
Gordan coefficients; n::~ ( u), as usual, are the 
matrices of the irreducible representation of weight 
s of the three-dimensional rotation group; and 
finally, 

YJ(m u· x M) = J_ (£-(pn))-l+iP/2D<J> (-
p ' p, ' 41tX X mfz,M U), 

where u is defined by (16) and E = (p2 + K2 )1ft. 
Besides m and p, K, l, s, and J are also in­
variants of the Lorentz group. We note that if the 
Fock amplitude 'Ps1s2 describes a system of two 
free particles with definite momenta p1 and p2, 

then the center-of-mass system exists and tqe 
quantities l, s, and J refer just to it. In the 
general case there does not exist a reference sys­
tern such that in it the total momentum of the two 
particles is zero, because generally speaking 
'Ps1s 2 is different from zero in the entire momen­
tum space. Therefore we cannot indicate a refer­
ence system in which l, s, and J have intuitive 
physical meaning, and must simply regard them 
as invariant variables. 

4. Let us now go on to the description of polari­
zation. We recall that in nonrelativistic quantum 
mechanics the state of polarization of a particle is 



RELATIVISTIC TRANSFORMATIONS OF THE WAVE FUNCTIONS 799 

completely described by the spin density matrix. 
It is convenient to take as the parameters charac­
terizing the polarization the coefficients in the ex­
pansion of the density matrix in terms of tensor 
operators that are multipole moments of various 
ranks and transform according to the irreducible 
representations of the three -dimensional rotation 
group.12 •13 We wish to introduce quantities that de­
scribe the polarization but transform according to 
irreducible representations of the Lorentz group. 
For one free particle it is natural to define the 
multipole-moment operator by the relation 

The polarization of a beam of free particles is de­
termined by the average values of these operators 
for the one -particle state (1): 

t \ xd3p "" v-.- so • ( ) ( ) 
<;JM = (<I> I> T JM<l>l} = ~Po LJ 2J T 1 Cso';JM 'flo P 'flo' P ' 

oo' (24) 

It is obvious that the quantity 

CJM (p) = ~ V2J + 1 c:~'; JM'P: (p) 'flo' (p) 
oo' 

is the density of the multipole moment of rank J. 
The transformation law of l:JM follows from Eq. 
(6): 

From this formula it can be seen that under the 
Lorentz transformation g0 all the multipole mo­
ments l:JM( p) of a free particle with momentum 
p undergo the same rotation R (g0, p ). Recalling 
that <pa(P) is the amplitude of the state with mo­
mentum p and spin projection a along the z 
axis in the rest system, we easily find that the ro­
tation of the polarization vector relative to the mo­
mentum p is determined by the rotation 

R (go, p) = W1 (p' /p') R (go, p) R (P/ p), p' = gp, 

where R(n) n0 = n. From this it follows that for 
g0 = u, R (u, p) = 1, i.e., under space rotations 
the spin turns along with the momentum; if, on 
the other hand, g0 = Lp', the angle of rotation 
of the polarization vector relative to the momen­
tum is given by 

(u0u~ + 1 + uu' cos II) u' sin II 
tanO= , , , , 

uu0 (u0u0 + 1) + u' [ u0 (u~ + u2 ) + u0] cos II + uu0u' 2 cos21I 

(26) 

where (u, u0 ) = (v (1-v2 )~1f2 , (1-v2 )-112 ), with 
v the original velocity of the particle; u', u0 are 
expressed in an analogous way in terms of v', the 

speed of the new reference system relative to the 
original system; a is the angle between v and v'. 
For a= 'Tf/2, tan(}= (v'/v)(1-v2 )112 (cf. Wigner's 
article14 ). It also follows from Eq. (26) that if the 
original velocity v = 1 (i.e., is equal to the veloc­
ity of light), then 6 = 0, and a longitudinal polari­
zation remains longitudinal after an arbitrary Lo­
rentz transformation. 

The tensor ~JM = J Kp01 d3pl:JM(P) does not 
transform in terms of itself, except in the case in 
which the particle has a definite momentum p; in 
this case ~JM also transforms by Eq. (25), as 
was already pointed out in a paper by Shirokov .15 

The representation of the Lorentz group given by 
(25) is, however, reducible; namely, it is the com­
plex conjugate of the representation (6) with s re­
placed by J. We cannot, however, apply the expan­
sion in irreducible representations given by (13) 
and (14), since in the general case J Kp01 d3p 
x .L)M li:JM(P) 12 does not have to be bounded. 

Furthermore, we shall not assume that the par­
ticle has a wave function, and shall treat the gen­
eral case, in which the density matrix is given in 
the jpa> representation: p (pa; p'a'). The den­
sity matrix transforms like the product of two wave 
functions o/s (pa) <p;(p'a' ), so that by means of 
(13) we can change from the momentum to the (mp) 
representation: 

p (mpu; m'p'u') = L] \ d3p d3~, Ys (mpu; pa) 
oo' ~ Po Po 

X Y; (m'p'u'; p'a') p (pa; p'a'). 

The Ys have been defined above. 

(27) 

The matrix p transforms by the direct prod­
uct Ym1p1 X yiri,2p2 of two irreducible representa­
tions of the Lorentz group. It is easy to show that 
Y~p is equivalent to the representation Y-m,-p· 
For the final expansion of the density matrix we 
need the expansion of the direct product of two uni­
tary representations Ym1p1 x Y-m2-p2 in terms of 
irreducible representations. This problem has 
been solved by Na1mark.11; We use his result and 
get 

Cmp (u) = ~ du1du2p (m1p1u1; m2p2u2) 

x T (m1p1u1;-m2,-?2, u2; mou), (28) 

where T is the kernel of this integral transforma­
tion: 
T (m1p1u1;- m2,- p2, u2; mpu) 

= rr'1•&no (ulu;-1) &n,o, (ulu-1) jn,o, (u2u-1), 

n=- ~ (m + m1- m2), n1 = ~ (m- m1- m2), 

n2= Hm + m1 + m2), a=-Hr + Pl-P2), 

01 = ~ (p- P1- P2), az = + (p + P1 + P2), 
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and 'Yna< u ) is the following function on the unitary 
group of matrices u: 

"(no(u) = I u211 n-Hiou;;:n= r u21J-Hio exp {-in arg u21}. (29) 

In Eq. (28) m runs through all the integral values 
for which n, n1, and n2 are integers. Thus the 
expansion of the density matrix p in terms of irre­
ducible unitary representations of the Lorentz group 
is accomplished in two steps: 

p (pa; p' a')-+ p (m1p1u1; m2p2u2)-+ Cmp (u). 

Each of the steps here is reversible. The trans­
formation inverse to the first step is obtained from 
(14). We write out only the inverse transformation 
for the second step: 

00 

p (m1p1u1; m2p2 u2) = (2~tt4 ~ ~ dp (m2 + p2) ~ ducmp (u) 
m-oo 

x T* (m1p1u1 ; -m2, -p2, u2 ; mpu). (28a) 

We remark that in the general case the system of 
two particles also does not have a definite wave 
function and is characterized by a density matrix 
p (p1a1, p2a2; Ptol• P2o2 ), which transforms like 
the product of two Fock amplitudes <Ps1s 2<Pta1, 
p2a2) cp~ s (P!oJ., P2o2). To expand it in irreducible 
parts on~ kust first change the density matrix p 
from the momentum representation I pa > into 
the representation I mpu > by means of the trans­
formation (23), and then apply the expansion (28) -
(28a). Because of their cumbersomeness we shall 
not present the final formulas, and shall only re­
mark that the function Cmp ( u) finally obtained, 
which transforms by the irreducible representa­
tion (mp ), is characterized by specifying, in ad­
dition to m and p, the following invariants: 
m1p1Zts1J1 and m2p2Z2-s2J2 · 

The writer is deeply grateful to I. S. Shapiro 
for suggesting this subject and for his constant 
interest in the work. 

APPENDIX 

The rotation u is determined from the condi­
tion (16) 

uLp = ku, arg k 22 = 0 (A.1) 

and is thus a function of u and p. Let us set 
u = u1u; then u~..pu- 1 = ku1. It is clear that u~..pu- 1 

is a pure Lorentz transformation: uLpu- 1 = Lp'. 
We find the corresponding momentum p' from 
the equation p' = Lp'Po = uLpu- 1 Po =up. There 
remains for us to find the rotation u1 such that 

(A.2) 

Substituting here the explicit form of l..p' in 
the spinor representation, Lp' = (Po+ K + (p ·a))/ 
..; 2K (p0 + K) , and making some simple calcula­
tions, we get 

U1 = Uz (<h) Ux (91) Uz (<:p1). ~1 = - 'F1 = ~tl2 + tan-1 (p~ I P: ), 
tan (9112) = y P:2+ P'; I (p~ + x - P~). (A.3) 

Since the rotation u1 depends on two independent 
variables, it is completely determined when the 
unitvector n1 =u11n0, n0 = (0, 0, 1), is pre­
scribed. It can be shown that 

_ 1 _ x (Po+ x) n- [Po+ x- (pn)] p (A.4) 
u n1- (Po+x)(p-(pn\) ' 

where n = u-1 n0• 
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