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We examine the radiation produced in a waveguide when a charged particle passes through the 
boundary between two media. It is shown that at ultrarelativistic charge velocities the radia
tion is mainly in the forward direction and its magnitude is proportional to the particle energy. 
Formulas are derived for the radiation energy and for its spectral distribution. 

TRANSITION radiation1- 3 may in the near future V2 ~n + t-~~n = 0 (1.4) 
find extensive application in fast-particle counters 
and in ultrashort-wave generators. The question 
of transition radiation in a waveguide is therefore 
of interest. 

1. Let us consider an arbitrary cylindrical wave
guide with perfectly conducting walls, filled with two 
homogeneous dielectrics, the constants of which are 
E1 and €2 for z < 0 and z > 0 respectively. A 
charged particle moves parallel to the axis of the 
waveguide from the negative z direction towards 
the separation boundary with velocity v. The field 
in the waveguide is described by a vector potential 
A ( 0, 0, A), the Fourier representation of which 
satisfies the equation 

2 &iw2 4n . 
V A.,1 + - 2 A.,, = -- J.,, i = 1, 2, (1.1) c c 

where j w is the Fourier component of the particle 
current. The field vectors are obtained from the 
relations 

E.,=-~A.,+~graddivA.,, H.,=curl A"', (1.2) 
C IWe 

with Aw = 0 on the surface of the waveguide. 
The solution of (1.1) is represented in the form 

of a field connected with the particle, and a free 
field, which is a "flash" of transition radiation, 
occurring during the reshaping of the particle field 
at the instant when it passes from one medium to 
another. The first field has the form 

where !Pn ( M) and A.n are the normalized eigen
function and eigenvalue of the first boundary prob
lem for the transverse section of the waveguide: 
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with !Pn = 0 on the surface of the waveguide, and 
M0 is the point of intersection of the trajectory of 
the charge with the transverse section. 

The free field is written in the form of a system 
of propagating waves 

<lO 

A~2 = 2e ~ B.n~n (M0 ) ~n (M) e-tynz, 
c 

(1.5) 
n=l 

with 

for w > 0, and a complex-conjugate expression 
for w < 0. The unknown coefficients are found 
from the condition of continuity of the tangential 
components of the vectors at z = 0: 

e2f n + we1 I v J 
A~+ (<»jv2) (1- ~2e,) • 

(1.6) 

Equations (1.2), (1.5), and (1.6) fully determine 
the field in the waveguide. 

2. From the formulas just obtained it is easy 
to calculate the flux of the Poynting vector due to 
the free field. Using the orthogonality of the eigen
functions and going over to integration over positive 
frequencies, we obtain 
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where the symbol ± indicates the direction of wave 
propagation. 

It is known, however, that in the waveguide there 
can exist, at certain frequencies, damped waves 
which, generally speaking, can produce in our case 
a unique "blocked" field at the separation boundary, 
i.e., a field consisting of standing exponentially
damped waves, the lifetime of which is determined 
by the time of dissipation of the electromagnetic 
energy in the substance. To clarify the physical 
aspect of this problem, let us compare the work. 
performed by the electromagnetic field on the par
ticle with the energy flux of this field through a 
waveguide section located at infinity (we disregard 
the Cerenkov radiation of the charge ) . For this 
purpose we use the Poynting theorem 

co 00 

Woo-W-oo= ~ dt ~ Ej dV- 4: ~ dt ~ [EXH]n dS, (2.2) 
-oo -co 

where the surface integral extends over the wave
guide section at infinity, and the volume integral 
over the waveguide segment between them. From 
(1.2) and (1.6) we can calculate the first term in 
(2.2), which represents the work done by the field 
on the particle 

00 co 

~ dt ~ Ej dV = s+ + s-- 4~2 ~ A~ i <Jln{M0 ) [2 

-oo n=l 

It can be readily shown that the sum in (2.3) rep
resents the energy flux due to the field connected 
with the particle. Furthermore, (2.2) contains 
terms for the energy flux due to interference be
tween the field of the particle proper and the radi
ation field. These terms have the form 

00 

~ (})I(w) exp {i (u>/V + f n) Z} dw, 
0 

co 

~ (})2 (w) exp {i (w;v- "(n) z} dw. (2.4) 
0 

An estimate of these integrals at large z, for ex
ample by the well-known stationary-phase method, 
shows that the first of these terms diminishes ex
ponentially with increasing I z I, while the second 
diminishes as z -l/2. This result is physically un
derstandable, since in the former case the particle 
field has practically all passed into the second me
dium, while in the latter case the radiation and the 
particle move in one direction and interfere in-

tensely over a certain distance, until the field over
takes the particle. This. distance is the character
istic zone of formation of transition radiation. More 
detailed estimates will be given below. 

The foregoing leads to the conclusion that all 
the particle losses (we do not consider polariza
tion losses ) go into production of traveling waves. 
There is no localized field in the direct vicinity of 
the separation boundary. It must be recalled, how
ever, that in transition radiation in a slab, this 
field, generally speaking, exists and must be taken 
into account. 

3. Let us consider radiation for ultrarelativistic 
incident particles and for the simplest dependence 
of Ei on the frequency, of the form €1 = 1 and 
E2 = 1 - ( w0 I w )2, where w0 = -../ 47Te2N/m is the 
plasma frequency of the medium. 

We estimate first the dimensions of the zone 
of formation of the transition radiation. The par
ticle field will interact for the longest time with 
that group of frequencies, the wave packet of which 
moves at a group velocity v. The center of this 
packet is at the frequency 

Wn = C Y(A~ + w~/c2) I (I- ~2). 

The interaction time !l T n is determined by the 
time of dissolution of this packet by dispersion 
in the waveguide; its order of magnitude is 

tl-cn = 1/c Y(l- ~2) (A~+ w~jc2), 
and therefore the dimensions of the effective zone 
of formation of transition radiation are given by 

ln ~ I / V (I - ~2) (A~+ w~;c2). (3 .1) 

The same result is obtained when the method of 
stationary phase is applied to (2 .4). 

Equation (3.1) determines the dimensions of the 
zone in which the motion of the particle cannot be 
distrubed. For example, we can draw from this 
the qualitative conclusion that to obtain a maximum 
effect in a slab (i.e., in order for the effects on the 
front and rear sides to add up) it is necessary to 
have a slab of thickness 0 » zl. 

In this case we can also calculate the total ra
diation energy. Integrating with respect to w in 
(2 .1) we obtain 

2 co 
s+ = e 1t '(1 I ,r. (M ) 12 fi- ~zLJ 't'n o 

n=I 

(3.2) 

where k0 = w0 /c. 
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It is seen from (3.2) that the principal radia
tion is along the motion of the particle and is pro
portional to its energy. This circumstance was 
pointed out by Garibyan.3 

Going to the limit in (3 .2), by increasing the 
transverse dimensions of the waveguide without 
bounds, the sum becomes an integral, evaluation 
of which leads to 

s+ = e2w0 I 3c Y 1 - ~2 , (3.3) 

which coincides with Garibyan's formula. 3 

Radiation energy density as a function of a dimensionless 
parameter. 1- E01 mode and 2 - E02 mode at 5 Mev particle 
energy, 3 - E01 and 4- E02 mode at 50 Mev particle energy. 

The diagram shows, on an arbitrary scale, 
curves for the radiation energy density Wn vs. 
the dimensionless parameter x = w/ w0 for a 
round waveguide, at n = 1 and 2 (E01 and E02 

modes) and w0r 0 /c = 1.85 (r0 is the waveguide 
radius ) , for incident particles with energies on 
the order of 5 and 50 Mev. A comparison of the 
curves shows that the E02 mode is vanishingly 
small compared with the E01 mode (the scale 
of E02 is magnified ten times in the figure). 

The radiation is essentially concentrated in the 
region of frequencies of order 

while the magnitude of the radiated energy at a 
fixed frequency depends relatively little on the 
particle energy. 

The result obtained shows that transition radi
ation can apparently be used to measure the energy 
of ultrafast particles. Bearing in mind the possi
bility of the use of transition radiation to generate 
millimeter waves, it becomes necessary, if notice
able radiation power is to be obtained, to use par
ticle bunches whose dimensions are much less than 
the radiated wavelength (see reference 4 and the 
literature therein). 

Assume for example, v = 6 x 109 particles in 
the bunch, a bunch repetition rate 107/sec (J = 10 
rna), w ~ 7.8 x 1011 sec-1, and !.lw/w ::::J 0.1. Then 
at particle energies on the order of 5 Mev the power 
radiated in the E01 mode is on the order of 15 
watts. We also note that to increase the radiation 
efficiency it is advisable to use a series of alter
nating dielectric plates. 

In conclusion, the author expresses his grati
tude to B .. M. Bolotovskil and G. M. Garibyan for 
discussions. 
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