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The effect of viscosity on processes taking place in a simple wave is considered in the hydro­
dynamical theory of multiple production of particles. It is shown that the effect of viscosity on 
the energy distribution of the fastest particles may be significant at sufficiently high energies. 

IN most researches on the hydrodynamical theory 
of multiple production of particles, the equations 
of a relativistic ideal liquid are used without con­
sideration of viscosity. The effect of viscosity can 
be of a two-fold nature. In the first place, the vis­
cosity increases the energy dissipation, raises the 
entropy, and, consequently, the number of second­
ary particles. In the second place, the appearance 
of new particles can bring about a significant change 
in the energy distribution, particularly in that re­
gion in which the number of particles is small while 
the energy possessed by them is large (for example 
in a simple wave1 ) • 

The problem of the role of viscosity was con­
side red by Emel 'yanov. 2 It was found that in the 
region of the fundamental solution (see reference 
3) in the case in which the viscosity coefficient is 
not large, the number of secondary particles that 
owe their origin to the viscosity is small in com­
parison with N0 and increases slightly with in­
crease in the primary energy EL (while the num­
ber of secondary particles No formed in the initial 
stage upon passage of the shock waves increases 
significantly with the energy N0 "" Et). 

In the present work we compute the change 6.N 
in the number of particles which arise as a result 
of the viscosity in the region of the simple wave. 
This region is of interest, first, because even an 
increase that is small in absolute value can appre­
ciably change the energy distribution, and second, 
because the velocity gradients in the region of the 
simple wave are larger than in the region of the 
fundamental solution, and therefore the role of the 
viscous terms is much more significant. 

It should be noted that it is not immediately 
possible to determine the coefficient of viscosity 
of a relativistic liquid, in view of which the results 
here are of a qualitative character. Much more 
important from our point of view is the character 
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of the dependence of 6.N on the energy of the pri­
mary particle E L. 

To estimate the number of particles formed in 
a simple wave because of viscosity, we make use 
of the expression for the 4-divergence of the en­
tropy flux:4 

k . a . 't; au' 
---,.(au')=---, ax' T axk (1) 

where a is the entropy density, ui is the veloc­
ity of an element of volume, T is the temperature, 
Tik is the viscous part of the energy momentum 
tensor, equal4 to 

(2) 

Equation (1) takes the form 

a t _ 4 1l (au1 )1 

ax; (au ) - 3 T axi ' (3) 

after substitution of the expression for Tik· Here 
Tj = Tj1 + % !; . Further, we shall carry out the cal­
culation under the assumption that the coefficient 
of viscosity T/ is small. Then quantities entering 
into the right hand side ( T and ui), we express 
in the form 

(3a) 

where we shall assume that 

(4) 

Taking into account the assumptions made above, 
we can find the total increase in the entropy in first 
order in the coefficient of viscosity, making use of 
the one-dimensional solution for the simple wave 
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T 0 = T~[(t-x) (1 -c0 )/ (t + x) (1 + c0)]c,f2, 

u~ = (t +CoX)/ V (I - c~) (t2- x 2), 

u~ == (x + c0 t) /V(l -c~) (t2 - x2), 

u~ = u~ = 0, 

where c0 = 1/{3 is the velocity of sound. 

(5) 

The increase in momentum in the simple wave 
will be 

jj.S = (' dx4 aaui = 4'1) (' dx4 (au~ )2 _!_. 
.) iJx' 3 .) ax' T (6) 
Q Q 

The region of integration Q here encloses the en­
tire simple wave with the exception of those of its 
parts where the temperature is less than critical 
Tk = J.L. Relative to these parts, we have assumed 
(as is usually done in hydrodynamical theory) that 
the interaction between particles is completely ab­
sent. Furthermore, a region of the order of the 
mean free path of the particles A. around the point 
t = x = 0 has been discarded. This point repre­
sents the state of the system at the moment when 
the shock wave reaches the edge of the nucleon, 
and therefore a discontinuity of temperature takes 
place in it. The region of integration Q is shown 
in the drawing. Integration has resulted in* 

• (1 +c,)'/2C~ 
jj.S = 2 "V3 "'a~{ln l (1- c0 ) ( T0 ) 

!-' 2cof- p. 

_ __l:':_ln I(V3 -1) _ (1+c0) 2 (J-__1:':_)} 
T~ -21- 2c~ T~ ' (7) 

where 1ra2 is the cross section of the interaction 
and Z is the initial longitudinal dimension of the 
system. It is evident from this expression that 

*In the integration it is convenient to transform to the new 
variables T = t + x and ~ = t- x. In these variables, Eq. (6) 
has the form 

AS= 3z;. ~ ~ ~ ~ [-r (1 + c0))(c,-2)/2 [~ (1- c0)]-(c,+2ll2 d'< d!; dydz. 
0 

The equations for the limits of integration are the follow­
ing: For the boundary T = fL : 

-r = [(1- Co) I (1 +co)] (T~ I p.)2C'~; 

the boundary of the rarefaction wave with the general solution: 

-r = "k (~I !;k/1+c,)'/(1-c,)', 

where 'T k and ~k are the critical values of the variables T 

and ~ corresponding to the temperature T = f.L· They are 
equal to 

the additional number of particles, .6.N "" .6.8, 
formed in a simple wave increases logarithmic­
ally with the energy. However, the ratio of the 
increase of entropy to its initial value .6.8/80 re­
mains very small and falls off with the energy 
(inasmuch as 80 "" E t4 ) • Thus the effect of vis­
cosity on the total number of secondary particles 
is not large. 

We now compute the number of secondary par­
ticles which are formed in the simple wave and 
remain in it to the moment of its decay. For this 
purpose we need to take the integral of (6) not 
over the entire region Q, but over a flow tube of 
particles remaining in the simple wave, n1. The 
region of integration n1 is shown in the drawing.* 

t 

AB is the boundary with 
the region of the general sol­
ution, COA is the region at 
rest, OA,B is the region 0,, 
OAB is the region 0 . 

As a result of the integration, we obtain 
* (l+c,)'/ZC~ 

!'::.S = 2 v'3 7ta2'1) {In l (1- c0 ) (To) 
1 p. 21-co \ p. 

_J:..ln /(1 +co) _1 + c0 IJ-...1:)} 
T~ 21-co c~ \ T~ 1 , 

(8) 

It is seen here that the quantity .6.81 differs 
from .6.8 only by terms which are independent of 
the energy of the primary particle; the role of 
these terms decreases with energy. Consequently, 
at sufficiently high energy, practically none of the 
particles created in the simple wave emerge from 
it. This means on the other hand that the new for­
mation of the particles takes place at the boundary 
T = J.L, which is natural, since the effect of viscos­
ity is greater the lower the temperature. 

*The region 0, differs from 0 only in that the boundary 
with the fundamental solution is replaced by the equation of 
the flow line passing through the point (-rk, ~k). In the coor­
dinates 'T, ~, this equation has the form 
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We estimate the absolute number of particles 
remaining in the simple wave under the assumption 
that these are pions. Then, in accord with refer­
ence 3, 

In spite of the fact that llN1 « N0 always, the 
value of llN1 can, with increase in energy, be com­
pared with the number of particles remaining in the 
simple wave without account of viscosity (accord­
ing to reference 1, this number does not depend on 
the energy and is equal to unity. in order of magni­
tude), or can even surpass it. This can materially 
change the character of the interaction, since in the 
region where the greatest amount of energy is con­
centrated there will be found not a single particle 
but several, and the fraction of the energy remain­
ing with a single particle will be much less. The 
energy for which llN1 ~ 2 and this phenomenon 
sets in can be estimated from (9): 

Ek- exp {p.!lN 1/2 "V3lta2'1j}. (10) 

It must be noted, however, that it is not possible 
to estimate this value of the energy Ek at all pre­
cisely, since the coefficient of viscosity TJ enters 
into (10). The value of this coefficient can be es­
timated very roughly; at the same time Ek depends 
very strongly on it (exponentially). For example, 
if the ideal gas model is taken, then 

(11) 

this value for TJ for a given density and tempera­
ture is an upper estimate.* 

*Comparison of the kinetic coefficients of viscosity tor 
gases and liquids shows that they are much smaller in liquids 
than in gases (see reference 4). 

Consequently, by substituting (ll) in (10), we ob­
tain a reduced value of the critical energy Ek "' 1011 

ev. Even if we take the coefficient of viscosity to 
be one third of this, then the corresponding value 
will be Ek "' 1014 ev. 

These examples show that it is not possible to 
give a value for the critical energy Ek at the pres­
ent time. 

The calculations carried out above give grounds 
in support of the idea that the character of the ele­
mentary act must change with increase in energy. 
That is, beginning with a certain energy Ek, the 
effect of the reservation of a large fraction of the 
energy ("'50 per cent) to a single particle2 should 
no longer take place. 

In conclusion, the authors extend their deep 
gratitude to G. A. Milekhin for fruitful discussions 
and a number of useful suggestions. 
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