
SOVIET PHYSICS JETP VOLUME 37 (10), NUMBER 4 APRIL, 1960 

ON THE THEORY OF THE PASSAGE OF THE NUCLEAR CASCADE THROUGH THE 

ATMOSPHERE 

I. P. IVANENKO 

Nuclear Physics Institute, Moscow State University 

Submitted to JETP editor May 9, 1959 

J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 1046-1049 (October, 1959) 

A method for the solution of the equations describing the passage of the nuclear cascade 
through the atmosphere is proposed. The boundary conditions can be prescribed at any 
arbitrary depth. The proposed method makes it possible to obtain the solution in a form 
similar to the one obtained by the usual method of successive generations with boundary 
conditions prescribed at the top of the atmosphere. The form of the solution is discussed 
for various boundary conditions. 

A number of methods for calculating the charac
teristics of the nuclear cascade process in the at
mosphere have been developed in recent years .1- 3 

Of these, the method of successive generations3 has 
been found to be a convenient and efficient one for 
the calculation of the required characteristics. In 
all calculations, it was assumed that the boundary 
conditions are given at the top of the atmosphere, 
at x = 0. 

In experiments on extensive air showers ( EAS ), 
the energy of the primary particle initiating the 
shower is usually not known, and neither is the 
depth of the initiation of the shower. In general, 
various characteristics of different EAS compo
nents are known at a certain depth of the atmos
phere. Therefore, for an estimate of the influence 
of the decay processes on the development of EAS 
in the depth of the atmosphere, and also for the 
calculation of the various development schemes 
of the shower, 4 it is necessary to find a solution 
of the nuclear cascade equations, the boundary 
conditions being given at a certain arbitrary depth 
Xn in the atmosphere. 

Zatsepin, Nikol'skil, and Pomanskii5 proposed 
to solve the problem by the method of successive 
approximations. It was shown that, for a certain 
specific choice of the zero generation, the i -th 
term of the series gives the depth and energy dis
tribution of the particles of the i -th generation. 
However, the form of the solution given in refer
ence 5 needs to be integrated over x and E for 
the determination of each consecutive generation. 
This makes it difficult to use this method of solu
tion in practice. 

In the present article, a method is presented 
for the solution of the nuclear-cascade equation 
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with boundary conditions prescribed at a given 
depth of the atmosphere, which is analogous to 
the general method of successive generations with 
boundary conditions prescribed at the top of the 
atmosphere, at xn = 0. 

We shall solve the one-dimensional problem 
neglecting, for the time being, the ionization loss, 
and assuming an isothermal atmosphere. We shall 
use a system of notation similar to that used by 
Zatsepin and Rozental' .3 

A system of nuclear-cascade equations, de
scribing the atmospheric -depth dependence of the 
number of particles of type 1J having an energy E 
can be written in the form 

(X) 

dP(~~~E, X) = - p(~) (E' x) + ~ ~ p(() (E'' x) w~() (E'' E) dE' 
( E 

_ K.,;E) p(~l (E, x) 

I::, 

+ ! ~ ~ p(><l (E', x) K ... (E') D~"l (E', E) dE. (1) 
x E, 

We assume that, in the energy range under consid
eration, aW) (E) = ao. 

The boundary conditions at the atmospheric 
depth xn are given by the values of the function 
p<1J)(xn, E), p<t)(xn, E), p<K)(xn, E) etc. We 
are looking for the solution of Eqs. (1) in the form 

00 (x-x / 
p(~) (x, E)= e-(x-xn) "5'. --.1-n- P)~l (x, E, Xn)· 

.:;....; I. 
(2) 

i=O 

Substituting (2) into (1), and equating the coefficients 
of identical powers of ( x - xn), we obtain the fol
lowing system of equations for the determination 
of the functions Pf1J): 
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P(~> ( E ) _ ap<~> (x, E, xn) 
•+I X, ' Xn -- ax 

+ ~ ~ P)r.> (x, E',xn) W~r,) (E', E) dE'- K~:E) P)~> (x, E, Xn) 

I; E 

E, 

+ ! ~ ~ p}><) (x, E', Xn) K,. (E') vr;> (E', E) dE'. (3) 
>< E, 

P 0 ( x~ E, Xn) has to be suitably defined to insure 
a rapid convergence of the series (2). From Eq. 
(2), for x = xn, we have 

P (Xn,E) =Po (Xn, E, Xn)· 

Hence it follows that P 0 (x, E, Xn) should be de
fined as the zero generation (i.e., primary par
ticles). 

We shall consider the following types of primary 
particles: a) stable nuclear-active particles which 
cannot be produced in the decay of any other par
ticles, b) stable particles which can be produced 
in the decay of other particles, and c) and d) un
stable particles analogous to a) and b). It is easy 
to obtain the dependence of P 0 ( x, E, Xn ) on all 
arguments. In case a), 

(4a) 

In case b), 

Po (x, E, Xn) = P (Xn, E) 

x x-x E'l. 

+"" \ ~ dx I p<"> (E' x x ) K (E') v<"">(E' E) dE' 
LJ ~ X ~ 0 ' ' n " ~ ' (4b) 
x Xn E 1 

In case c), 

Po(X, E, Xn) = p (xn, E) (Xn/ x)E~!E 

In case d), 

Po (x, E, Xn) = p (Xn, £) (Xn/ x)E~ IE 

E, 

X ~ p~><) (E', X, Xn) K>< (£') D~") (£', E) dE'. 
E, 

(4c) 

(4d) 

Thus, Eqs. (2), (3), and (4) fully determine the solu
tion of Eq. (1) with boundary conditions prescribed 
at the depth Xn. The solution is in the form of an 
infinite power series in (x -xn). It can be shown, 
however, that, in cases most interesting in practice, 
the series converges rapidly, and the sum of the 
terms from i = 0 to i ::s (x- xn) represents the 
solution with an acceptable accuracy. 

We shall determine the depth and energy de
pendence of nuclear-passive mesons of type p. 
For these particles, Eq. (1) can be written in the form 

dP(7l) (E, x) = _ K~ (E) p(7l) (E x) 
dx x ' 

E, 

+ ! L} ~ p<x> (£', x) Kx (E') D~"> (E', E) dE'. (1') 
" E, 

Its solution is easy to find: 

E, E 

X ~ p<"> (E', x) E~ D~") (E', E) dE'. (5) 
E, 

Thus, to calculate the number of nuclear-passive 
mesons it is first necessary to find, according to 
Eqs. (2) - (4), the depth and energy distributions 
of the mesons whose decay results in the mesons 
under consideration. 

The above discussion can easily be generalized 
to take the ionization loss into account. The ioni
zation-loss term can be written in the form 
,BoP<11>(E, x)/oE, where ,B is the ionization loss 
per mean free path, assumed to be independent of 
the energy. As before, we shall look for a solu
tion in the form of Eq. (2). It should be noted that 
the series represented by Eq. (2) will converge 
rapidly only if the ionization loss is not the main 
process that determines the passage of nuclear
active particles through the matter. Consequently, 
the particle energy E should be markedly greater 
than ,Bx. In analogy to Eq. (3), we obtain the follow
ing system of equations for the function Pf17>: 

(~) _ aP)~> (x, E, xn) 
pi+l (x, E, Xn) - - ax 

"" + ~ (' PF·> (x, E', Xn) W ~r,) (E', E) dE' 
r, i 
ETj p<7ll ( E ) -Ex i X, , Xn 

E, 

-1- _.!_ 'V (' p<"i (x E' x ) £" v<><> (E' E) dE' 
X ~ .\ t ' ' n E' 11 , 

X Et 

ap)7ll (x, E, X,;) • 
+ ~ a£ ; l ;>!. (3') 

In this case, the dependence of P 0 ( x, E, Xn) on 
all arguments is also given by Eqs. (4a) - (4d), 
where, on the right-hand side, we should substi
tute for E the value E + .Bx - ,Bx0• In this way, 
the above formulae give the most complete solu
tion of nuclear cascade equations by the method of 
successive generations. Formulae for the remain
ing components of the nuclear cascade do not differ 
from the corresponding formulae given by Zatsepin 
and Rozental' .3 
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