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where don is the dipole moment matrix element, 
and perform the necessary integration in (2), we 
get finally after elementary, but cumbersome 
computations 

U (R1, R2 , R3) =- 132 hc:x1 (0) 

X IX2 (0) IX3 (0) I rrR1R~Ra (R1 + R2 + Raf, (5) 

and this formula is valid under the assumption that 
the distances between the atoms are much larger 
than the characteristic wave length A.0 in the spec
trum of the atom (R1, R2, R3 » A.0 so that exchange 
forces play no role whatever; as was already stated, 
we neglect the effects of higher multipoles ) . 

1 I. E. Dzyaloshinski'i, JETP 30, 1152 (1956), 
Soviet Phys. JETP 3, 977 (1957). 
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WE found an exact numerical solution of the static 
dispersion relations obtained in references 1 and 2 
for the photoproduction P -amplitudes. We used 
the method, proposed by Omnes3 and based on the 
work of Muskhelishvili, 4 of reducing the linear sin
gular integral equations to regular Fredholm equa
tions. The procedure (which is not unique in the 
case of scattering), for the transition from the 
singular to the regular equations is found to be 
unique in this case under the following conditions: 
1) the scattering phase shifts vanish at the threshold 
and at infinity, 2) the solution of the regular equa
tion is bounded and has the same value at infinity 
as the solution of the singular equation. 

The values used for the phase shifts were ob
tained from the Chew-Low static equations (at 
f2 = 0.08 and a cutoff parameter P = 7 ), the solu
tions of which were obtained by the Salzmans5 and 
repeated by Tentyukova on the "Strela" computer. 
The regular photoproduction equations were solved 

by successive approximation on the "Ural" com
puter of the Joint Institute for Nuclear Research. 

The exact solutions for the quadrupole ampli
tudes and the e -parts of the magnetic dipole am
plitudes behave qualitatively like the correspond
ing Bohr terms multiplied by cos 6.1 The J.1. -parts 
of the magnetic dipole amplitudes (including the 
isotope-scalar amplitudes) behave like "'q-3 sin 6. 
This means that the meson created upon interaction 
of a photon with the static magnetic moment of the 
nucleon always experiences secondary scattering. 

It is shown further that the electric dipole am
plitude is independent in the static approximation 
of the magnetic moments. This follows from the 
supplementary condition and from the dispersion 
relations for the longitudinal amplitudes, obtained 
in reference 6. 

As a first attempt at comparing the complete 
expression for the photoproduction amplitude with 
experiment, with allowance for the obtained cor
rections, we calculated the coefficient C in the 
photoproduction cross section of 1r0 mesons at 
threshold: 

d~ (iP ->rr0p) I dD. = A +B cos 8+ C cos2 8. 

In the figure, C is given in (n/JJ.oC )2 units, q is 
the meson momentum in the c.m.s. and in units of 
J.l.oC 2, and q0 = .J 1 - q2 . The solid curve corre
sponds to the exact solution, while the dotted one 
corresponds to the approximate solution obtained 
in reference 1; the experimental points for 160-
240 Mev are taken from reference 7, while those 
for 260 Mev are from reference 8. It is seen that 
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the exact solution leads to fair agreement with ex
periment near threshold. This agreement becomes 
somewhat worse for large energy, which can be 
attributed to relativistic effects. The approximate 
solution of reference 1 is in poor agreement with 
experiment, as noted by Baldin and Govorkov 
(private communication). 

We take this occasion to express sincere grati
tude to A. A. Logunov, S. V. Fomin, and N. N. 
Govorun for interest. in the work, and also to 
A. M. Baldin for very valuable comments and for 
acquainting us with his paper prior to publication. 
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As is known, Onsager's1 and Feynman's2 ideas 
about vortex lines yield the right order of magni
tude of critical velocities for superfluid helium 
rotating in a cylinder and for flow from a narrow 
capillary into a large beaker. In the former case 
the vortex lines are straight and parallel to the 
cylinder axis, while in the latter they are rings 
formed in the beaker near to the junction with the 
capillary. 2 

It will be shown below that similar values of 
the critical velocities can be calculated for the 
flow of helium through a long capillary. It is 
natural to suppose that the vortex lines will, in 
this case, be closed curves lying in planes per
pendicular to the capillary axis. The shape of 
the lines will be determined by the capillary cross 

section, i.e., for a circular cross section the lines 
will be circular and for a rectangular section the 
lines will form closed curves nearly rectangular 
in shape. The angular momentum associated with 
such lines is evidently zero, while the linear mo
mentum is non-zero and is directed parallel to 
the capillary axis, i.e., parallel to the flow veloc
ity v. According to Landau3 the change in energy, 
~E, of flowing helium (in a coordinate system 
fixed with respect to the capillary walls ) , associ
ated with the formation of a vortex line, is ~E 
= Ev- PvV ( Ev and Pv are the energy and mo
mentum of a vortex line). A vortex line can be 
formed if ~E < 0. As superfluidity disappears 
when a vortex line appears, the critical velocity 
vk is determined by the condition ~E = 0, i.e., 
Vk = Ev/Pv· 

The momentum Pv of a narrow vortex line is 
given by4 Pv = Kp J dFn, where K is the circula
tion of velocity along a contour enclosing the line 
and p is the density and the integration is over a 
surface bounded by the vortex contour Z. In cal
culating the line energy we shall assume that the 
vortex line is sufficiently far from the walls for 
surface effects to be neglected. Then4 

E =_l_\(curlv(r),curlv(r'))d d, 
v 87t j I r - r' I r r . 

Since Pv is proportional to the square of the lin
ear dimensions of the line and Ev is directly pro
portional to it, the minimum ~E corresponds to 
the maximum line length, coinciding with the trans
verse dimensions (for a rectangular cross section 
it is therefore not energetically profitable for cir
cular vortices to be formed instead of rectangular 
vortices). If, in fact, the line is near the walls, 
Eq. (1) for Ev is inexact, but it is sufficient for 
calculating Vk· 

According to Feynman, 2 the circulation K is 
quantized: K = 2msti/m, where ns = 1, 2, ..... . 
The smallest values of energy, Ev and of I ~E I 
correspond to ns = 1. By calculating the line en
ergy and momentum we obtain for a circular cross 
section of radius r 

vk ~ (h/ mr) (In (r 1 d)+ In 16- 714 ) 

( d is the diameter of the line cross section, d « r). 
For a rectangular cross section 

vk = __!_{-_!__[In 4a (V~- a) - _!___] 
m b bd 4 

+ ~ [In 4b cV~- b) _ _2__ J + 2 -. I~ + ~ } ; 
a ad 4 V a" b" 

and for b «a 

v" = (hI tnb) [In (2b 1 d) + +J . 


