Letters to the Editor

ON THE MASSEY PARAMETER IN THE THEORY OF ATOMIC COLLISIONS

G. F. DRUKAREV

Leningrad Physico-Technical Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor May 7, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 847-848 (September, 1959)

 \mathbf{I} T has been shown by Hasted and Stedeford¹ and Fogel' and coworkers 2,3 that the extensive experimental material on the capture of electrons in collisions of atoms and ions can be well accounted for within the framework of the so-called adiabatic hypothesis of Massey.⁴ Thus the magnitude of the cross section is determined by the parameter $|\Delta E| a/hv$, where $|\Delta E|$ is the change in the internal energy in the collision, v is the relative velocity of the atoms before the collision, and a is a quantity with the dimension of a length whose magnitude is of the order of atomic dimensions. For a $|\Delta E|/hv \gg 1$, when the process is adiabatic, the cross section is small. As the velocity increases the cross section becomes larger and reaches its maximal value for $|\Delta E| a/hv \sim 1$. For still higher velocities the cross section drops again.

With a defined as

$$a = h v_m / |\Delta E|, \tag{1}$$

where v_m is the velocity for which the cross section is maximal, it appears that the numerical value of a is mainly determined by the type of process and is almost independent of the nature of the colliding particles. Thus, according to the data of Hasted, $a \sim 8A$ for the capture of an electron by singly charged ions, and $a \sim 1.5A$, from the data of Fogel', for the capture of two electrons.

It is of interest to clarify what physical characteristic of the process corresponds to the parameter a as defined by formula (1). For this purpose we consider the known formulas for the momentum $q(\theta)$ imparted in the scattering into the angle θ with a change ΔE in the internal energy (in the center of mass system). Let \mathbf{p}_0 and \mathbf{p} be the momentum of the particle before and after the collision. Using the relation $(\mathbf{p}_0^2 - \mathbf{p}^2)/2\mathbf{m} = \Delta E$ and observing that $|\mathbf{p}_0 - \mathbf{p}| \ll \mathbf{p}_0$ (which is usually true in the case of atomic collisions), we obtain

$$q(\theta) = |\mathbf{p}_{0} - \mathbf{p}| = [(\Delta E / v)^{2} + 4p_{0}^{2} \sin^{2}(\theta / 2)]^{1/2}.$$

In the small angle forward scattering $(0 \le \theta \le |\mathbf{p}_0 - \mathbf{p}|/\mathbf{p}_0)$ the momentum $q(0) = |\Delta E|/v$ is imparted. In particular, if $v = v_m$, we have $q_m = |\Delta E|/v_m$. Since the velocity v_m corresponds to the maximal cross section, q_m represents the most probable momentum imparted in the forward scattering.

We therefore have

$$a = h / q_m$$
,

i.e., a is inversely proportional to the most probable momentum imparted in the forward scattering. The abovementioned characteristic peculiarities of the quantity a, therefore, express the fact that each process is characterized by a definite most probable momentum transfer q_m which is almost independent of the nature of the colliding particles. The circumstance that a is smaller for the double capture than for the single capture has, from this point of view, an obvious explanation: the momentum transfer in the double capture is, of course, larger than in the single capture.

The actual numerical values of a indicate that the magnitude of q_m is of the order of the atomic unit of momentum \hbar/a_0 (a_0 is the Bohr radius). Hence the adiabatic condition corresponds to $q \gg \hbar/a_0$.

I am grateful to Ya. M. Fogel' for a discussion.

¹ J. B. Hasted and J. Stedeford, Proc. Roy. Soc. A227, 466 (1955).

² Fogel', Mitin, Kozlov, and Romashko, JETP **35**, 565 (1958); Soviet Phys. JETP **8**, 390 (1959).

³ Fogel', Ankudinov, and Pilipenko, JETP **35**, 868 (1958); Soviet Phys. **8**, 601 (1959).

⁴H. S. Massey, Rep. Progr. Phys. **12**, 248 (1948).

Translated by R. Lipperheide 156