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An investigation is made of the propagation of monochromatic plane waves in interpenetrat­
ing moving media. Equations are obtained for the refractive index; these equations are 
used to investigate the stability of the propagating waves. The time growth (damping) fac­
tor for the wave is found for the case of motion of a plasma through a dispersionless dielec­
tric. 

As is well known, under certain conditions grow­
ing electromagnetic waves can be produced in the 
motion of electron streams in a plasma or any 
other medium. The growing plane waves (with 
longitudinal electric fields) produced in the motion 
of an electron stream in a plasma have been con­
sidered by Akhiezer and Fa1nberg1 and by Ginzburg 
and Zheleznyakov. 2 Below we give a phenomeno­
logical method which can be used to analyze the 
building (damping) of electromagnetic waves in 
moving media. 

We consider two infinite, uniform, isotropic, 
lossless and nonmagnetic media, I and II. Medium 
II is at rest in the laboratory Cartesian coordinate 

system K and has a dielectric constant E: 2• Me­
dium I, in which the coordinate system K' is fixed, 
moves uniformly along the x axis of system K 
with a velocity v and has a dielectric constant E1 

in the K' system. 
If E1 and E2 are approximately equal to unity, 

or if we consider the motion of a plasma in a 
plasma, the effective electric field is equal to the 
average macroscopic field and the polarization 
vectors of medium I and medium II add.* The ma-
terial equations that relate the electromagnetic 
field vectors D, B, E, and H, in the K coor­
dinate system can be written as follows: t 

D = (1 _181 ~2 ) {81 (I - ~2 ) E --i- (81 - I) (\7x H] - s1 ~ ( ~ E))}+ (82 -I) E, 
B = (l-1s,(i•) {(I- ~2) H- (s~-1)([7x E j + ~ (~ n))}, ~ = 7. 

(1) 

These differ from the well known electrodynamic 
equations for moving media in that the first equa­
tion contains the additional term ( E:2 - 1) E which 
characterizes the contribution to the electric in­
duction D due to the. polarization of the fixed me­
dium, II.t 

Using the material equations (1) and Maxwell's 
equations we solve the problem of propagation of 
plane electromagnetic waves in medium I and me­
dium II. Because of the symmetry of the wave 
propagation pattern with respect to the x and x' 

*li the efiective field for the combination of medium I and 
medium II is known, in principle all of the following results 
can be generalized for media with high dielectric constants. 

tin the monographs by Veksler3 and Pauli4 in the equation 
for B (E, II) the minus sign in front of the term v ( vH)/ c2 is in­
correct. 
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axes, which coincide with the velocity vector v, 
we will assume that the plane electromagnetic wave 
is propagated in the direction of the unit vector y 
which lies in the xy plane and forms an angle e 
with the x and x' axes and v. As is well known, 
the Maxwell curl equations lead to the following 
relation5 when the expression for the plane wave is 
used 

+If medium I and medium II move with different velocities 
with respect to the laboratory coordinate system, K, these 
equations become considerably more complicated. They may 
be obtained by computing the total tensor of the moments in 
the K coordinate system and comparing it with the electromag­
netic field tensors. In a similar manner it is possible to find 
the equations for the motion of an anisotropic medium through 
another anisotropic medium (a practical example of a system 
of this kind is the motion of a plasma in a plasma in the pres­
ence of an external fixed magnetic field). 
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D = -n[yxH], B =n[yxE], (2) 

where n is the "refractive index" of the medium in 
which wave propagation takes place. Substituting 
(2) in (1) and eliminating the components of the 
electromagnetic fields E and H, we obtain after 
some simple manipulation the following equations 
for the refractive index: 

f1 (n*) = n'2 
><{ (1- ~,~2 ) (e, +e.- 1) cos2 e + [el (1 -e.~·)+ (ez 

(e1 + e2 - 1) 

+ 2n* (s1 - I)~ cos 0 

_ (1- ~2 ) [e, (1- e2 ~ 2 ) + (ez -1)1- (e1 -1)2~2 

1- e 1 ~2 

f2 (n*') = n*' 2 [(I - ~ 2 ) sin 26 + (I - s 1 ~2) cos2 6] 

+ 2n** (s1 - I)~ cos 0 

1)1 sin 2 e } 

_ (1- ~ 2 ) [e, (1- e2~2 ) + (ez -1)1- (e1 -1)2~ 2 

1 -- el~· = 0, (3) 

These differ in the coefficient of the n2 term. As 
is well known, the difference in the equations in (3) 
when e ;<! 0 denotes the existence of two character­
istic waves with different polarization and veloci­
ties. The equation f1 (n*) = 0 refers to the wave 
with the field components Ex, E and H while . y z 
the equatwn f2 (n**) = 0 refers to the wave with 
the components Hx, Hy and Ez. When e = 0 
both equations coincide and, since it can be shown 
that 

n*Hz sine=- (sl __1.._1 So_- I) Ex, n*'E Sl. r) ff ., z n<·= x. 

the field components Ex and Hx (parallel to the 
velocity of medium I) vanish.* 

For a given frequency and known dielectric con­
stants [Et (w) and E2 (w)] the two equations of (3) 
determine the velocity of propagation of the electro­
magnetic waves in both media (one moving). The 
solutions of these equations determine the "growth 
factor" of the electromagnetic wave in the moving 
medium. In this connection we determine the 

*In the derivation of the first equation of (3) one actually 
obtains a somewhat more complicated expression: 
f,(n*)( €,. + ~ - 1) Ex/sin 0 = 0. The requirement Ex.;, 0 means 
that either f,(n*) = 0 or €1 + € 2 - 1 = 0. In the case in which 
medium I and medium II are plasmas the last condition corres­
ponds to a plasma wave with a longitudinal electric field. Re­
placing €1 and €2 by the appropriate expressions which apply 
in the plasma for nonrelativistic velocities ({3 « 1) it is easy 
to obtain the dispersion equation w~/w2 + 0 2 /(w- kv)2 = 0 
which coincides (if the thermal-motion corrections are ne­
glected) with the equation obtained in references 1 and 2 on 
the basis of a kinetic analysis. In the equation given above 
w~ is the square of the plasma frequency of the fixed plasma 
(22 . ' 1s the square of the plasma frequency of the moving plasma, 
and k is the wave vector. 

growth of an electromagnetic wave in a plasma 
moving in vacuum, since it is of some interest. 

For a plasma that moves with nonrelativistic 
velocity (v « c) in the absence of a magnetic 
field in the laboratory system ( K) we have 
n2 = 1 - w~ I w2, where w is the frequency in this 
reference system. Thus, the flow velocity v does 
not appear in the expressions for the "refractive 
index" and the "drag" of the wave does not appear 
in explicit form. On the other hand 

n2 = I - w~ (I - n~)2/(ll2 (I - n~)2 = I - w~ (I - 2n~)/(•>'•, 

n~ ~I, (4) 

where w' = w ( 1 - n/3) is the frequency of the wave 
in the K' reference system, which moves with the 
plasma (for simplicity it is assumed that the wave 
is propagated in the direction of motion of the 
plasma). Equation (4), which is quadratic in n, 
coincides with Eq. (3) in the case of longitudinal 
propagation ( e = 0) when f3 « 1 and E2 = 1 if 
the quantity E1 = 1- w5/ w' 2 is the dielectric con­
stant of the plasma in the reference system that 
moves with the plasma. Solving Eq. (4) for n we 
have 

(5) 

This equation indicates that the wave is dragged. 
Thus a plasma is an example of a medium in which 
dispersion leads to the appearance (disappearance) 
of a drag effect, depending on the choice of the 
reference system* used for computing E. 

Equation (3) can also be used to compute growth 
(decay) of the electromagnetic waves [when the 
dispersion relations for Et ( w) and E2 ( w) are 
known] by replacing n by kc/ w and solving 
these equations for w for real wave numbers, k. 
In this case E1 must obviously be expressed in 
the K' coordinate system (fixed in the moving me­
dium) by transforming the frequency from the 
laboratory reference system to the K' coordi­
nate system. 

As an example we solve the problem given above 
for the case in which an infinite uniform plasma 
moves in a nondispersive medium characterized by 
a dielectric constant E2• In the K' coordinate sys­
tem (fixed in the moving plasma) the dielectric 
constant is 

- (!)~ (1- ~·) (!)~ (1- ~·) 
El - I - • = I - --,---__:_-,----~ 

w-(1-n~cos(J)2 (w-kvcos8)2 ' 
(6) 

where w and k are the frequency and wave num­
ber of the electromagnetic wave in the K coordi-

*This situation has been clarified in a discussion with 
8. N. Gershman and V. V. Zheleznyakov. 
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nate system. If we substitute the expressions which 
have been derived for e: 1 in Eq. (3) for n = n* 
and n = n ** and take w = w + ~ and w - kv cos (J 

= 0, very complicated algebraic equations are ob­
tained for ~. If it is assumed that the plasma is 
rarefied ( w~ - 0) and we impose the additional 
condition wV~2 - 0 when w0 - 0 so that e:1 -1 
when w0 - 0 and assume that ~ « w, the equa­
tions can be simplified considerably: 

t32wsz- tzw2 1- ez~z cosz 6 - w2wz tan2 6 ~ = 0 
'" '" ~2 cos2 () 0 ez ' 

es2;;;s2 - !;2w2 1 - €z~2 cos2 () = 0 (7) 
~2 cos2 6 ' 

where w = kv cos (J and k is real. We note that 
in the derivation of Eq. (7), because w~ « ~ 2 « w2 

we have neglected terms which contain ~ 4 and 
higher powers of ~ and terms proportional to 
w%. The first equation in (7) corresponds to a 
wave whose polarization coincides with the polari­
zation of the Cerenkov wave (Ex ""'0) while the 
second is for a wave with Hx ""'0. When 
1- e:2f32 cos2 (J = 0, which is the Cerenkov condi­
tion for a single charged particle, the solution of 
the first equation in (7) is 

(8) 

while the solution of the second equation is ~ = 0. 
In extracting the roots in Eq. (8) it is found that 

two values are complex; one of these corresponds 
to a wave whose amplitude increases in time. It 
is apparent from the solution to Eq. (8.) that the 
original assumption (for which wV~2 - 0 when 
w~- 0) is actually satisfied. When e:2 - 1 we 
find ~- 0, which is to be expected. We note also 
that when (J - rr/2 the quantity ~ remains finite 
because when 1- e:2 {32 cos2 (J = 0 and cos e- 0, 
e:2 - 00 • If (J - 0, ~ - 0 and consequently a wave 
which propagates in the direction of motion of the 
plasma exhibits no growth. In this case, as has 
been noted above, the electric field component Ex 
also tends to zero. Since this component is paral­
lel to the direction of motion of medium I, the 

work done by the plasma on the wave, by virtue 
of which the amplitude of the field increases, also 
tends to zero. The same interpretation applies for 
the absence of the growing solution in the second 
equation of (7), which refers to the wave for which 
Hx ,r. 0 but Ex = 0. 

Equation (8), which determines the growth of the 
transverse waves at an angle found from the 
"Cerenkov" condition (in the sense of the depend­
ence of ~ on w0 and w) is analogous to the 
growth factor for longitudinal plasma waves.1•2 The 
only difference is that in plasma waves the plasma 
frequency of the fixed plasma is used rather than 
w. 

Incidentally, if we assume formally that e:2 in 
Eq. (8) is large, the expression obtained coincides 
exactly with the expression for the gain in a travel­
ing wave tube (derived in the nonrelativistic ap­
proximation) transformed for the case of propaga­
tion of the wave at the "Cerenkov angle" with re­
spect to the motion of the electron beam.* 

The author is indebted to A. V. Gaponov and V. 
V. Zheleznyakov for valuable advice in the execu­
tion of this work and for many useful discussions. 
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*This has been pointed out by A. V. Gaponov. 


