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The magnitude of the critical supercooling field H01 in superconductivity theory1 is deter
mined. It is found that the field Hc1 is larger than or smaller than the critical field He, 
depending on whether the superconductor in a weak field is of the London or of the Pippard 
type. The superconductor in the first case must in a strong field display a behavior simi
lar to that of alloys. The magnitude of the ratio Hc 1 /He depends weakly on the tempera
ture in the whole temperature range, 

IT is well known that superconducting metals in a 
magnetic field undergo at some value of the field a 
phase transition from the normal to the supercon
ducting phase. For a bulk specimen this transition 
is a first-order transition; the value of the critical 
magnetic field He can thus be obtained from ther
modynamic considerations and was evaluated by 
Bardeen, Cooper, and Schrieffer (BCS) in their 
theory of superconductivity.1 Along with the ther
modynamic field there exist, apparently, for a given 
temperature, still two other critical field values 
corresponding to the so-called "superheating" field 
and the "supercooling" field Ret· These fields de
termine a region of possible hysteresis: for fields 
above He, but below the superheating field the 
superconducting phase is metastable and, on the 
other hand, for field values below He, but above 
Hc1 the normal phase is metastable. (We under
stand by metastability, as always, an instability 
with respect to a finite perturbation. ) To deter
mine the magnitude of these fields thermodynamic 
considerations are insufficient and one must turn 
to the microscopic theory of superconductivity. 
Using an earlier developed method2 the existence 
in the BCS theory of a "supercooling" field is 
proved in the present paper and its magnitude is 
found. 

In the method mentioned above, the supercon
ductor is described by two Green functions G ( x, x' ) 
and F+ (x, x' ), and equations for these in a mag
netic field can in the usual manner be obtained 
from the field-free equations. We shall first con
sider the absolute zero. These equations are then 
of the form 

593 

{ i ~ + ~ \r ~- ieA (r)) 2 + !J-} G (x x') at 2m ar , 

+ ib. (r) p+ (x, x') = o (x- x'), 

{i Jr- 2~ (fr + icA (r)Y- :L} F" (x, x') 

- ib.* (r) G (x, x') = 0, (1) 

where 

D.* (r) = jgjP(x,x), (2) 

In a constant magnetic field G(x, x') and 
F+ ( x, x' ) are functions of the difference in the 
time variables, t- t'; expanding all quantities in 
Fourier integrals in this difference we get for the 
Fourier components G w ( r, r' ) and FC:, ( r, r' ) 
the following set of equations 

1~>> + )- (~- ieA (r))2 + rL} G ir r') 
I 2m ar ' "'\ ' 

+ ib. (r) F! (r, r') = o (r- r'), 

{- tJJ + 2~n (:r + ieA (r)Y-+ t.t} F! (r, r') 

+ i6.* (r) G, (r, r') cc~ 0; (1') 

+oo 
D.* (r) = j g i (2rt)-1 \ dwF"! (r, r). (2') 

-00 

The value fic 1 of the supercooling· field is the 
boundary itself of the metastability of the normal 
phase; at smaller fields the normal phase is abso
lutely unstable with respect to the appearance of a 
superconducting phase. We are, of course, not 
talking of the appearance of small layers of the 
superconducting phase but about the possibility 
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that there appears that specific correlation between 
electrons which is caused by the interaction between 
them and which leads to the superconductivity phe
nomenon, and which finds an expression in the ex
istence of a non-vanishing function F+(x, x' ). The 
metastability of the normal phase for fields H > Hc1 

means instability with respect to the occurrence of 
finite values of F+ ( x, x' ) and 6. ( r). In the point 
Hc1 there occurs for the first time a solution with 
infinitesimal 6. ( r) and F+ ( x, x' ) . This makes it 
possible to simplify the set (1') essentially, retain
ing in the equations only the first nonvanishing 
terms for small 6. ( r ) . Furthermore, the magnetic 
field is uniform in the normal phase; it is conven
ient to take the vector potential A ( r) in the form 
Ax=- Hy, Ay = Az = 0. The second of Eqs. (1') 
takes the following form 

~- w + _!_ r(~- ieHy)2 + ~ + ~] + fL} p+ (r r') 
I 2m L ax c ay2 az2 "' , 

- i~* (r) G.., (r, r') = 0. 

In this equation Gw(r, r') is the Green function 
of the electrons in the normal metal: 

(3) 

{ 1 [( a ieH y)2 1 a2 a2 ] } ~ 1 1 w + 2m ax + ---;;:- T ay2 + az2 . + fL G"' ( r, r ) = 0 ( r - r ) . 

(4) 

If we rewrite (4) in such a way that the differen
tiation is with respect to the variables r': 

{w + 2~n [{a~· - ie~y·y + a~:2 + a~:2] + (.t} (';,. (r · r') 

= o (r- r 1
), (4') 

we can use (4') and (3) to write the function 
Fw ( r, r' ) in the following form 

FZ; (r, r1
) = - i \G.., (s, r1

) G_.., (s, r) ~ * (s) d3s. (5) 
.) 

Substitution of (5) into (2) leads to an integral 
equation for 6. * ( s ) : 

-t-oo 

~*(r)=-i!gl}; ~ dw~G..,(s,r) (L..,(s,r)~*(s)d3s. 
-00 (6) 

The value of the magnetic field for which there oc
curs for the first time (coming from large fields ) 
a nonvanishing solution of this equation is then just 
the value of the supercooling field Hct which in
terests us. 

For what follows, it is necessary to determine 
the form of the function Gw(r, r' ). We perform 
the transformation 

G.., (r, r 1
) = exp {- i~~ (y + Y1

) (x- x')} G~ (r- r 1
). (7) 

After substituting this expression into (4) the co
efficients in the equation for Gw ( r - r' ) are func
tions of the difference, namely, 

{ + 1 r' a ie H 1 11 )2 } 0-- ( ') , ( I) w 2m \fu- 2C X r- r + i.L "' r- r = o r- r . 

(8) 

Thanks to this G~(r- r') clearly also depends 
only on the difference R = r - r'. If there is no 
field the Green function Gow ( R) is, as can easily 
be checked, of the form 

G (R)= [-(mj2nR)exp[ip0 R-I-iwRju], w>O (J I< ) 
0"' l-(m/2nR)exp[-ipoR+iwRfv], w<O w ~fL · 

(9) 

Such a choice of the solutions of (8) without a field 
was made in accordance with the requirement that 
the imaginary part of the Green function changes 
sign when the frequency changes sign.3 We shall 
show that the function Gw ( R) in (7) is the same 
as its value (9) without a field. Looking ahead we 
note that in the following we require distances R 
of the order of ~ 0 where ~ 0 is the parameter in 
the BCS theory which is connected with the value 
6.0 of the gap in the spectrum at T = 0 and which 
is equal to ~ 0 "' liv/ 6.0• It turns out that one can 
neglect at those distances the term quadratic in 
the field in (8), or in other words, that the curving 
of the electrons in the fields of interest to us is 
very small. Under those conditions it is conven
ient, because of the large value of p0, to look for 
solutions of (8) in the form exp { icp ( R)} Gow ( R), 
where Gow(R) is the Green function (9) when 
there is no field present. Substituting this expres
sion into (8) leads to the following equation for 
cp ( R ) , which contains only quadratic terms in 
the field: 

~ PoO'f' I oR- (e2 /4c2) ([H x R])2 = 0, 

[the ± sign in this equation depends on the sign 
of the frequency in accordance with (9)]. As will 
become clear below, the fields of interest to us 
are such that eH~Vc "' 1. Therefore, cp (R) • 
which is determined by this equation will give a 
correction in the phase factor in (7) of the order 
of 1/p0~ 0 , i.e., an insignificant quantity of the 
order 10-4• 

Substituting (7) and (9) into (6) and integrating 
over the frequency we get the following equation 

~* ( ) = mp0 JJLL \ exp {(ieH I c) (!I+ y') (x -x')} A* ( ,1) d" 1 ( 10) 
r 2"2 2" .\ I r - r' I" u I r . 

The kernel of this equation leads to a logarithmic 
divergence when we integrate the right hand side 
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for r = r', which is connected with the fact that 
the relation (2) determines the gap t. ( r) as the 
value of the function F+ for equal arguments. This 
definition is somewhat inaccurate. The fact is that 
in the BCS model the interaction Hamiltonian which 
leads to superconductivity was chosen in the form 

(11) 

with a constant coupling constant for all electrons 
with energies in a narrow layer nw in the neigh
borhood of the Fermi surface. This cutting off is 
realized in (11) by the functions ep: 

O -{1, lep-eFI<~ 
p- 0, I "P- "F I> w • 

The quantity w enters logarithmically in the de
termination of the gap t.0, in the Fermi spectrum: 

1 = I g I (mpo I 2>:2) In (2;;; I ~o)· 

To the cut-off in momentum representation there 
corresponds, in coordinate space, some spreading 
out over distances of the order nv/w. Using (11) 
for the interaction Hamiltonian and repeating the 
derivation of the equations in reference 2, we find 
easily that the quantity t. * ( r) is connected with 
the function F+ ( x, x') in the following manner: 

~*(r) =~~O(r-s)O(r-m)f+(t,s;t,m)d3sd3m, (2'') 

where e ( R) is a smearing out function corre
sponding to the cut-off function ep in the momen
tum representation: 

O(R)=(2rrf3~eiPR0pd3p=~~sin%oRsin(9:1v). (12) 

On this basis we must, strictly speaking, write 
Eq. (6) in the form 

+oo 

~ * (r) = i I g I ~ ~:~Go, (s, r) i:L, (s, r) ~* (s) d3s, (6') 
-00 

denoting by Gw(r, r') the integral over the Green 
function (7): 

G:{f;-r') = ~ S(r-s) G"' (s, r') d3s. 

The field dependent phase factor in (7) can be taken 
out from under the integral sign in the last expres
sion since e (r- s) has the character of a o -func
tion. It amounts thus practically to replacing 
Gow ( R) in the previous calculations [see Eq. (9)] 
by 

Following this, all expressions stay finite. We have 
succeeded in eliminating the cut-off quantity using 

the relation (2"), which determines the gap in the 
energy spectrum at T = 0 when there is no field. 
One verifies easily, by evaluating the corresponding 
function F0 (t, r; t, r') through the Fourier compo
nents found in reference 2, that 

F+ (t r· t r') =milo sin P.oR K (RD. 0 ) 
o ' ' ' 21t2 R o . v , (13) 

where K 0 is a Bessel function of imaginary argu
ment which tends logarithmically to infinity for 
small R. 

Substituting (13) into (2") and noting that the 
function e ( r) possesses the following 0 -function 
property 

~ O(r-s)O(s)d3s = S(r) 

(this equation can be most easily checked by the 
Fourier components) we get, using the form (12) 
for the function e ( R) and averaging the fast os
cillating factors: 

I=, / tnPo\K (RD.o)sin(;;Riv)d3R 
I g 4"'4 ~ o v R" 

_ !_7!•1 g 1\ ( C cos (R~ 1 v) d~) K (RD..o) d•R. 
4"4 ~ \ ~ R2 0 v 

0 

Integrating over d I R I in the last expression by 
parts we find 

"' J__ = _ m 2 fl 0 \ ,;[5 \sin (R~ I v) K (R~ , ) d3R 
I g I 41t4 ~ ~ .) R· 1 0 I v . 

() 

This expression for 1/l g I is convenient because 
the integral over d3R posssesses the same singu
larity as Eq. (10) when w-oo. 

After substituting this expression into (6) we 
get an equation in which the logarithmically diverg
ing terms are cancelled after which w can tend to 
infinity. Omitting the intermediate calculations we 
shall give the final form of (10), taking into account 
that the function t. * ( r) depends on the coordinate 
y only: 

A * ( ) I I er D.o \ u y ll\-v-E) 
co 

=-__!_ \ exp{-l(eHic)(y2 -y'2)1}~*( ')d '. 
2 j I Y - y' I y ,y 

-oo 

[We shall show below that the general form of the 
function t.*(r) corresponding to a given value of 
Hc1 can be found by a simple method in terms of 
the solution of this equation.] Here y is Euler's 
constant, E an infinitesimal constant introduced 
to cause the integration on the right hand side to 
be performed only over a distance I y - y' I ~ E. 

Thanks to the logarithmic character of the singu
larity on the right hand side, E disappears from 
the final results. It is convenient to introduce di-
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mensionless variables ~ = y ,J eH/ c in which the 
equation becomes 

co 
~*mIn( e'l't.oo )= _ + \" Li(~')exp{-l~z-;·zll d~'. 

\v V eH 1 c - ~ I ~- ~· I 
-co (14) 

The largest value of the magnetic field, for 
which a solution that decreases at infinity exists 
for (14), is just the value of the critical field H01 , 

the "supercooling" field. Equation (14) can only 
be solved numerically. We shall show that (14) 
has a maximum eigenvalue for the magnetic field 
and we shall estimate its magnitude. To do this 
we add to and subtract from .6.(~') under the in
tegral on the right hand side of (14) the value .6.(~ ). 
After this (14) is transformed to the following form, 
which no longer contains the infinitesimal constant 
o: 
~*(~)In (t.JeV:~) = <P m ~* (0 

co 

_ ~ \ exp {-I~·- ~'2 1} [~* ("') _ j.* (")] d"'. (15) 
~ ~ I ~- ~· I ' ' ' 

-co 

The function <I> ( ~ ) is here equal to 
1~1 

<P (") = c-~' I e:;''t' In I ~ I + ;· J;' 
c; .\ c; I~ 1-~· ., . 

0 

Multiplying (15) by .6.( ~) and integrating over 
~ we get 

-co 
00 

-\- ~ \ \ exp {-1 ~2 - ~' 2 1} I ~ (t) _ j. ("') '2 ift' d" (15') 
4 ~ j 1~-~'1 c; i; I c; <;-

-co 

Since <P ( ~ ) > 0 it follows from the fact that the 
right-hand side is positive that 

(16) 

We can obtain the value of H01 approximately 
(and conceivably with great accuracy) by a varia
tional method if we choose .6. ( ~ ) in the form of 
exp (- a~2 ). With such a form for .6.( ~) all inte
grals in the variational principle for (14) can be 
evaluated and the maximum value of H arises 
when a = 1 and is equal to 

Hc1 ~ (e21 / 2) (c~~/ ev). 

One can show that a lower limit is then obtained 
for the value of H01 . The theory gives for the 
thermodynamic critical field He at T = 0 

He= 6oV2mpo/rr. 

The ratio of the two fields is 

ffc 1 /Hc = l.77(3rrTcmC/e)(2rrm;7C(3)p~)'1• (17) 

[ ?;"(x) is Riemann's zeta-function; J (3) = 1.202]. 
It is convenient to write this quantity as follows. 
We have shown earlier4 that in a sufficiently nar
row region of temperatures near T c the equations 
of the phenomenological Ginzburg-Landau theory5 

with a double charge follow from the theory of super
conductivity. The phenomenological constant K of 
this theory was defined microscopically and turned 
out to be equal to 

x = (3rrTcmC/e)(2rrm;7C(3)p~)'1'. (18) 

If the ratio (17) is expressed in terms of this con
stant it can be written as follows 

H C1 I H c = I. 77 x. (19) 

Near Tc the result of the Ginzburg- Landau the
ory5 must hold, i.e., 

H C1 I H c = V2 )(. (20) 

We see that the change in the ratio H01 /He is 
small in the whole of the temperature range and 
does not exceed 25%. 

It is interesting that according to (18) - (20) the 
magnitude of the field H01 does by no means have 
to be less than H0 , not even for pure superconduc
tors. Moreover, it is well known that in the new 
theory we can distinguish among the pure super
conductors two classes depending on their proper
ties in a weak magnetic field. For superconductors 
of the first class the penetration depth o is at all 
temperatures appreciably larger than the param
eter ~ 0 of the BCS theory. Such superconductors 
satisfy the electrodynamics of the Londons and 
may be called London superconductors (see the 
survey by Abrikosov and Khalatnikov6 ). The cri
terion for this case o » ~ 0 can be written as the 
condition K » 1 (more accurately K » 0.4 ). The 
opposite case may be called the Pippard case. Here, 
the penetration depth is in the whole of the temper
ature range, except in the immediate vicinity of T 0 , 

much less than ~ 0 , and the London equation is re
placed by a more complicated nonlocal relation. 
The corresponding criterion will be K « 1. The 
majority of the known pure superconductors be
longs to the last or to an intermediate type. It is 
clear from (18) and (20) that if a superconductor 
belongs to the Pippard class the condition H01 « He 
is sure to be satisfied. In the London case, how
ever, H01 must be larger than H0 . In other words, 
a metal the behavior of which in a weak field shows 
the London character must display in a strong field 
the characteristic properties of alloys: a negative 
surface energy, a smeared out transition, and so 
on. Abrikosov7 studied alloys in the phenomeno-
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logical Ginzburg-Landau theory from this point of 
view and showed that superconductors with K > 
1/-12 possess such properties. 

Apart from T0 , the combination of quantities 
that make up the constant K according to (18) con
tains also the effective electron mass m at the 
Fermi surface and the Fermi momentum p0; ex
pressing K in terms of the density of the number 
of "free electrons" n = p~/3n2 we get 

x = 0.485 kT cem'l. 1 enh~···. 

To determine m and n from experimental data 
we choose as one of the quantities the value of the 
critical magnetic field H00 at T = 0, which is 
expressed as follows in terms of m and n: 

We can take as the second quantity, for instance, 
data on the anomalous skin -effect in the normal 
state. The magnitude of the active part of the re
sistance R yields n directly:8 

n = (rc'l• 3'1• w3 h'l• 1 c6e3) R-'1•. 

When we evaluate the processed data on the spe
cific heat in the normal state and the magnitude of 
R for the anomalous skin effect in reference 1 
(see reference 9) we find K = 0.011 for alumi
num and K = 0.135 for tin. At the same time we 
must note that this method is rather unreliable, 
since the result is very sensitive to a change in 
the magnitude of R (R6 enters into K ). It is 
therefore advisable to use other data. The evalu
ation must proceed differently for Pippard and for 
London superconductors. 

It is convenient to use for London superconduc
tors the fact that the equations of the Ginzburg
Landau theory hold for them over a wide range 
near the critical temperature. We can thus use 
the well-known relation5 with the doubled charge4 

x = (V22e /he)( Hero} )T=Tc, (21) 

where HcT is the critical field at the given tem
perature and oT the penetration depth. We can 
also use this relation for metals intermediate be
tween London and Pippard types, since in that case 
the region of applicability of (21) is sufficiently 
wide. The majority of the most studied supercon
ductors belongs apparently to the intermediate 
type. Tin10 (K = 0.158), lead11 (K = 0.234) and 
indium11 ( K = 0.22) are, for instance, such super
conductors. 

The Ginzburg-Landau equations are, finally, 
applicable also for Pippard metals in the immedi
ate vicinity of T c, but this neighborhood is very 
small (.6.T/T0 ~ K2 ). For aluminum the London 

temperature region begins at .6.T/Tc,...., 10-4. Equa
tion (21) can therefore not be used to determine K 

in the range of temperatures which is easily acces
sible. The value of K can in that case be deter
mined from data on the magnitude of the magnetic 
field Hco and the penetration depth o0 at T = 0. 
The theoretical expression for o0 in the Pippard 
case is according to the BCS theory of the follow
ing form: 

Oo = cV312)(rc2pgkTc/rh4c3 )-'1•. 

Expressing the constant K in terms of o0 and 
H00 we get 

x=213(eflco/ch)3 og. (22) 

For aluminum we find in this way K ~ 0.012. 
The available experimental data of Faber's on 

the magnitude of the supercooling field refer to a 
temperature range near T0 •12 For tin, the value 
of H01 /He as given by (20), with K = 0.16-0.226, 
agrees very well with the experimental12 value 
0.232. For indium with K = 0.22 the theoretical 
value H01 /He = 0.32 is nearly twice as large 
as the experimental12 one, 0.16. It is difficult to 
understand the causes of such a discrepancy. 

At first sight Eq. (20) for aluminum pertains 
only to that temperature range where the Ginzburg
Landau equations are applicable. This range is 
very narrow, but we shall see in the following that 
the region of applicability of (20) is for a Pippard 
metal appreciably wider than the London tempera
ture region* near T c. It is, in particular, helpful 
to note that at T = 0 the character of the solution 
of (14) does not depend on whether the metal is a 
Pippard or a London metal in a weak field. With 
the value of K found above for aluminum near T c 
we have Hct /H0 ~ 0.017 while the experimental12 

value is 0.036, i.e., larger than the theoretical one 
by a factor two. Such a discrepancy should not 
cause any surprise for a Pippard metal if we take 
into account how rough the model is and the high 
powe:J;s of the experimental quantities which enter 
into (22). At the same time Eq. (20) can itself serve 
to determine K for Pip pard metals. The smallness 
of the ratio H01 /He (or, what is the same, the 
large magnitude of the surface energy) is a cri
terion for a metal being of the Pippard type. 

In conclusion we wish to discuss some addi
tional points. First we touch upon the general form 
of the solution of (6). Up to now we assumed that 
the magnitude of the gap .6. ( r ) depended only on y. 
Such an assumption is permissible, since an appro
priate choice for the vector potential A had been 
made in the equations of the basic set (1'). It is also 

*This fact was already noted by Ginzburg. 13 
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rather obvious from uniformity considerations that 
the value of the field equal to H01 will correspond 
to a constant solution .6. ( x, y ) in the direction of 
the field. At the same time the problem is degen
erate in the x, y plane, i.e., many solutions .6. ( x, y) 
correspond to one value of H01 • One can easily 
verify with the aid of (3) and (4) that if .6.(y) is 
a solution of (6) the function 

D. (x, y) = exp (ieHax I c) D. (y- a) 

is also a solution, and the general form of the func
tion which corresponds to a given value of H01 will 
thus be 

D. (x, y) = ~ exp (ieHxai J c) AiD. (y- ai) 

with arbitrary aj and Aj. 
We shall finally dwell on the problem o:f the 

temperature dependence of the field H01 . If the 
temperature is different from absolute zero, one 
must use instead of (1 1 ) the appropriate thermody
namic technique.14 We applied this technique ear
lier4 to a superconductor; we shall here only indi
cate to what differences from the foregoing results 
it leads. The mathematical change in the formal
ism used above consists of the following: it is suffi
cient to replace w by iwn [where Wn = 7TT(2n+l), 
n is an integer] in all equations, beginning with (4), 
and to replace the integration over dw by summa
tion over n, as follows: 

co +oo 

- ,_/- \' dw ( ... ) - > T ~ ( ... ) . . 
_n .) w t<•ln 

-00 -00 

The field dependence of the Green functions re
mains as before, and the further calculations lead 
instead of to Eq. (14) to 

00 

D.r (~) ln (Cj~o v ~~ 0) = - + \ K T (~, n D.r (~') d~', (23) 
-00 

where 

K T (!;, n = ~!_ l/ c ;"\. lo [(!;2 - !;'2) VL(.f=--11 du. (24) 
" elf i usinh(27tTv-1 Ji c jeff u I ; -;;'I) 

Because of the complexity of this kernel one can 
in the general case only obtain the dependence of 
Hc1 on T by a numerical integration. We shall 
consider limiting expressions. 

The kernel (24) can for low temperatures be 
written in the following form: 

"' • , 2rc2 T2c" exp {-1 ;2- ~'21} 
Kr (~. ~) = Ko(~,~)- 3eH vz --~-"~+>'I - ' (25) 

Cl ~ '-:> 

where K0 ( L ~ 1 ) is the kernel of (14). This expan
sion loses its validity in the neighborhood of ~ 

= - e' where the temperature dependent correction 
term in (25) has a singularity. In that point one 

cannot expand the hyperbolic sine in (24) in powers 
of T since it just guarantees the convergence of 
(24) for large u. One sees easily that the width of 
the region .6.~ =I~ +~ 1 I where (25) is inapplicable 
is of the order .6.~ ~ ( 27TT/v)-/ c/ eH01 . We re
write (23) in the following form: 

i ·=) ln rcrc.o-. I c o) +_I_ +\;xo K '" rJ I ("') i=' 
'\• \ v V eli n 2 . 0 \<;, ' <; 1 • 

-CD 

o/i +oo 
= Doo (e) II--+ \ oK T (!;, n D.o <n d';', 

C[ j 
--00 

where 
), (~) = D.r m- Doo (~). 

One must determine oH T /H01 from the condition 
that the right hand side be orthogonal to the solu
tion of the homogeneous Eq. (14). If we use an ap
proximate solution for .6.0( ~) ~ exp (- ~ 2 ) we can 
find the main term in the additional term in 
Hc1 /HcT at low temperatures, using (25), which 
is of the form ( T2 /T~ ) ln ( T /T c ) . Integrating 
with logarithmic accuracy, we get 

Hct!Hcr = 1.77x[l +0.65(T!Tc)2 ln(const·T!Tc)l (26) 

with an unknown constant [if T « Tc we have:6 

HcT = Hco(l-yT2/3T~ )]. 
Near the transition temperature the field H01 

is small, and the equation becomes considerably 
simpler. It is clear from (23) and (24) that in that 
case in the integration the essential I ~ - ~~ I are 
of the order of ~ 0-/ eH/ c because of the exponen
tial character of the kernel (24), while it is natural 
to assume that .6. ( ~ ) changes little over those dis
tances. Using this, it turns out that near T0 the 
integral equation (23) is changed into a differential 
equation which to a first approximation is the same 
as the corresponding equation for the same problem 
in the Ginzburg- Landau theory with a doubled 
charge, 4' 5 the known solution of which leads to (20). 

Taking the next terms into account, we can find 
after some calculations the temperature dependence 
of the ratio Hc1 /He near T 0 : 

Hc,/Hc=V2z(l+0.4lt): t=i-T!Tc (27) 

We should like to note here that the condition for 
the applicability of (20) and (27) follows from the 
derivation: .6.T « Tc, whereas the applicability of 
the general equations of the Ginzburg- Landau the
ory obtained in reference 4 near T c was confined 
to a much narrower temperature range near T 0 . 

In discussing the penetration depth problem, for in
stance, for these equations to be applicable it is 
necessary that not only .6. T /T c be small, but also 
that the superconductor be in the London region at 
the temperatures considered, i.e., that the pene
tration depth be large compared to ~ 0 • For this 
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it is necessary that the condition ../ ~ T /T c « K 

is satisfied which for superconductors with a 
small K ( Pippard superconductors ) may be an 
appreciably stronger restriction. In the problem 
of the supercooling field, therefore, t;he question 
whether a superconductor belongs to the Pippard 
or to the London class is not a decisive factor over 
the whole temperature range. 

We saw already that the change in the ratio 
Hc1 /He is small in the whole of the temperature 
range. We can thus believe that an interpolation 
formula, combining (26) and (27) can represent 
adequately the variation of Hc1 /He over the whole 
temperatur~ range. Since the logarithm in (26) is 
a slowly-varying function, we can take simply for 
such a formula the polynomial 

He1 I He= x [1.77 -0.43 (T I Tc) 2 + 0.07 (T 1 Tc)4 ]. 

Returning, in conclusion, to the problem of the 
possibility whether there exist pure superconduc
tors with alloy properties, i.e., with K > 0.56, we 
note that among the best studied superconductors, 
lead and indium, have the largest K, about 0.23. 
To increase K it is necessary to have a larger 
value of He and a larger penetration depth. From 
this point of view, La, V, U, and Nb are worthy 
of attention. Unfortunately there are, apparently, 
no data about the penetration depth for these super
conductors. There are in reference 11 some indi
cations about the anomalous properties of these 
metals which are similar to the properties of al
loys, although it is not clear whether these anoma
lies are caused by the presence of impurities. 
There is at any rate considerable interest in clari
fying the problem of the existence of pure super
conductors with K > 0.56, since they should possess 
all anomalous properties of alloys. 

In conclusion the author expresses his gratitude 

to Academician L. D. Landau for his interest in 
this work and for valuable advice and to Professor 
V. L. Ginzburg for remarks made. 
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