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The problem of the determination of the potential in quantum field theory is studied in re
lation to the limitations that are imposed on the transition amplitude by the conditions of 
orthonormality and completeness for the systems of states of the noninteracting and inter
acting particles. A nonlinear integral equation for the transition amplitude is used for the 
construction of the potential. It is shown that the potential so constructed correctly de
scribes the scattering of particles in the range of energies in which production of new par
ticles does not occur, and also the bound states. Problems associated with the nonunique
ness of the potential are discussed. 

IN the theoretical literature of recent years much 
space has been given to papers devoted to the study 
of the interaction of particles in quantum field theory 
by means of some sort of effective potential (cf., 
e.g., the survey article by Klein,1 which gives an 
extensive bibliography, and also references 2 - 6). 
Nevertheless, the problem of the potential in quan
tum field theory cannot be regarded as solved. The 
methods proposed for its construction are not sa tis
factory. Some of them are in essence approximate 
(for example, the particles are assumed to be bound, 
and as the potential one takes their energy when they 
are a given distance apart). In other papers the au
thors get a potential that depends on the energy, so 
that they do not arrive at the Schrodinger equation 
for the eigenvalues, but at an equation of the form 
[ ho + V ( E ) 11/JE = Elf!E. The methods for eliminat
ing the dependence of the potential on the energy 
that have been proposed in a number of papers ( cf. 
reference 1 ) are extremely artificial and compli
cated, and are not very effective, in the opinion of 
the authors themselves. 

We shall be guided by an idea due to N ovozhilov, 
that a potential independent of the energy can be de
termined by means of a nonlinear equation for the 
transition amplitude.3 The present paper develops 
and refines this idea. 

For our purposes the basic quantities are 
<cpa 11/J t > in the quantum mechanics of two par
ticles and < c1> a I \liS> > in quantum field theory, 
where cpa and <I> a are states of the two particles 
without interaction, and If!<;} and \ll<;} are states 
of the interacting particles with the outgoing-wave 
condition. The nonlinear equations for the transi
tion amplitude relate <cpa lzt;s> > to the potential 
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in a simple way. Thus the problem is to relate 
<cpa 11/Js> > to < c1> a I \ll~> > (in the construction 
of the potential the latter quantities are regarded 
as known). As is shown in Sec. 1 of the present 
paper, direct identification of <cpa lzt;~> > with 
< ci> a I \liW > is impossible. In virtue of the ortho
normality and completeness of the systems cpa 
and 1/J~>, the <cpa 11/J~+> > satisfy definite rela
tions. On the other hand, the <<I> a I \ll~> > do not 
satisfy these relations, because the system of states 
\ll~+> (a is a two-particle state) is not complete, 
i.e., because of the possibility of the production of 
new particles. 

In Sec. 2 t~e < cl>p I \ll~+> > are re~aced by other 
quantities < cl> a I \ll~' > , where the <I> a are chosen 
in such a way that, firstly, they agree asymptotically 
with the <P a• and secondly, the relations mentioned 
above are satisfied. On the basis of the < ~a I \lljf > 
it is possible to construct a potential which, as wlll 
be rigorously proved, correctly describes the scat
tering of the particles at energies below the thresh
old for the production of new particles, and makes 
it possible to find the levels of the bound states. 

At the end of Sec. 2 we give expressions for the 
potential that are suitable for concrete calculations. 
They are an improvement on the corresponding for
mulas given by Novozhilov, 3 who did not examine 
the question of the possibility of identifying the 
<cpa II/!~+> > and the < <P a I \ll~+> >. It must be 
emphasized, however, that this improvement does 
not extend to the results of the calculation of the 
nucleon-nucleon potential made by Novozhilov and 
Terent' ev, 4 since it is outside the scope of the ap
proximation used in that paper (the correction 
terms fall off as e-3~r and faster with increase 



THE DETERMINATION OF THE POTENTIAL IN QUANTUM FIELD THEORY 583 

of the distance r between the nucleons; 11 is the 
mass of the 1T meson ) . 

Section 3 contains a brief discussion of some 
peculiarities of the potential constructed here. It 
turns out that the very statement of the problem 
of describing a quantum-field system by potentials 
does not permit an unambiguous definition of the 
potential. All the possible potentials are connected 
by transformations of a special type, and differ 
only at small distances between the particles. Con
siderations of simplicity and convenience enable 
us to single out uniquely the potential that is most 
suitable for applications. Here also it is shown 
that, generally speaking, the potential so obtained 
has a nonlocal character. 

In our work we use some formulas of the gen
eral theory of scattering, which can be found, for 
example, in a paper by Ekstein. 7 

1. STATEMENT OF THE PROBLEM 

Let us consider the Schrodinger equation for a 
system of two particles that interact with the po
tential V: 

iO~ I at = (ho + V) ~ = h~. (1) 

Let us introduce the eigenvectors cp 01 of the un
perturbed Hamiltonian, where a denotes the 
spins and momenta of the two particles. Let h0cp 01 

= E 01cp01 and <cp01 I CfJ{3 > = oa{3· We denote the 
corresponding orthonormal eigenvectors of the total 
Hamiltonian, with outgoing waves, by IJ;~>. We de
fine t 0113 by the equation 

<cpcx J <j;~+)) = Ocxll- fcxll / (Ea- Ell- iO). (2) 

Let there exist also bound states 1/!m, so that 
hl/!m = EmiJ!m, where Em< E 01 when the total mo
menta of these states are the same. We set 

(3) 

A matrix element of the S matrix is defined by 
the formula 

Scxll = ocx{l- 2rrio (Ecx- E{l) fcx,S· 

For t 0113 we can write the linear equation 

and the nonlinear equation 

(4) 

(5) 

A peculiarity of the nonlinear equation (6) is its 
simple dependence on the potential. In reference 3 
it is therefore suggested that one insert in (6) in-

stead of t 0113 the corresponding expressions from 
quantum field theory, whereupon the potential in 
momentum space is determined from (6). Of course, 
to determine the potential in terms of t 0113 one could 
start from (5), as Klein did} This, however, would 
have given nothing new, since (6) in fact is the solu
tion of (5) that gives the potential explicitly. We 
thus get 

V t " lay1:;-ll + '' ta.m t;t13 
cxll = cx{l + .LJ E - Ell - iO .LJ Em - Ell . 

Y Y m 

The question arises: can one insert arbitrary 
quantities for the t 0113 in (7)? It turns out that 
they cannot be arbitrary. The point is that the 
taf3 must satisfy certain integral relations that 
arise from the orthonormality and completeness 

(7) 

of the systems IJ;~> , IJ!m and cp01 . These relations 
were first obtained by Wigner and Eisenbud. 8 As 
an example we give one of these relations here: 

' t+ 
r;;:,- fc:J.(3 1 " fay y(3 

E"- Ell- iO T .LJ (£"- Ey- iO) (£13 - Ey + iO) 
y 

(8) 

[hereafter when we refer to (8), we shall take it to 
mean all the relations of this type] . 

It can be shown by direct verification that the 
relations (8) for the t 0113 are not only necessary, 
but also sufficient conditions for the quantity V 
determined from (7) to be capable of being inter
preted as a potential. One of these relations guar
antees the Hermitian character of V, and the 
others assure that (5) with the potential V will 
have as its solution the same ta{3 as appear in 
(7). 

Thus we conclude that the quantum-field quan
tities inserted in (7) instead of the ta{3 must 
satisfy the conditions (8). 

Let us now turn to the quantum-field system. 
The usual definition of the transition amplitude in 
field theory is* 

(9) 

Here .P are the so-called asymptotically station
ary states.9 The quantities that correspond to them 
in ordinary quantum mechanics are the states of 
noninteracting particles. H is the field-theory 
Hamiltonian, and 'l'X> are its eigenstates with 
outgoing waves, corresponding to the asymptotic
ally stationary states .P.6.. and energies E.6... The 
S matrix is expressed in terms of the Tr ~ by a 

*We denote quantities relating to the quantum field theory 
by capital letters. 
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formula analogous to (4). We further define the 
quantities TrM = < <Pr I H-Er I 'l•M>, where 
the 'liM are bound states in the field theory. The 
indices r and M characterize all the states of 
the quantum-field system, including both the states 
corresponding to the two particles with which we 
are concerned ( r = y and M = m) and also states 
corresponding to other sets of particles (r ,r y 
and M >" m). 

For the quantities T a{3 and Tam we can 
write relations of the type of (8), but with one ex
tremely important difference. In (8) the summa
tions are over the spins and momenta of the two 
particles and their bound states. In the relations 
for the T a{3• on the other hand, the summations 
must be taken over all the states in the field theory, 
i.e., as compared with (8) we have additional terms 
corresponding to the summations over all r ;r y 
and M >" m. 

From this there follows our most important 
conclusion: T a{3 and Tam do not satisfy the 
required conditions (8) and cannot be inserted 
instead of ta{3 in (5)- (7). 

We ~hall show:.., however, that there exist quan
tities T a{3 and Tam that on one hand satisfy (8) 
and on the other hand are equal to T a{3 for E a 
= E{3, if processes of creation and annihilation of 
~articles do not occur. Substitution of T a{3 and 
Tam in (7) gives the desired potential. The con
struction of the T a{3 and Tam will be carried 
out in the next section. 

2. CONSTRUCTION OF THE POTENTIAL 

Let us separate out from all the states 'l!~> 
the states with r = y. Let P be the operator for 
projection onto these states, so that 

('¥'I P'Y") =~('¥'I'¥~+)) <'YS+) I 'Y") 
y 

(10) 
m 

If the two particles under consideration form cer
tain bound states, then in the sum over m we may 
include not all of these states m but an arbitrary 
selection from them. 

Let us orthogonalize and normalize the .P a 
with respect to the metric (1 0). If 

then the state vectors 

y 

will obviously have the required properties: 

(11) 

(12) 

(13) 

By N in (12) we mean the Hermitian integral op
erator whose kernel is defined by (11). We shall 
assume that [ 1 +N] <Pa >" 0. 

We assume that the orthonormal system P~a 
so obtained is complete in space determined by the 
projection operator P. In fact, if this were not so 
there would exist a linear combination of the JV" > 

and 'lim that would be orthogonal to all the P.P a• 
and consequently to all the .P a (in view of the fact 
that 1 + N cannot vanish). But the expression 
< 'll~+ >I .P a> is analogous in meaning to the phenom
enological function of the state y in the momentum 
representation, and for such quantities it is natural 
to assume linear independence. 

Let us set 

~ (+l 'fa.ll 
(<Da.J '¥13 ) = 0"'1l- E E ·o ' a.- l3-L 

- Ta.m 
(<Da.l 'I"m) = E - E . 

m " 
(14) 

In virtue of the orthonormality and completeness 
of the syste,Els of stat~s >l1V">, 'lim, and P~y. the 
quantities T a{3 and Tam defined by (14) satisfy 
the conditions (8). Substitution of these quantities 
in (7) gives us a Hermitian potential V for which 
solution of the Schrodinger equation (1) at once 
gives the quantities T a{3 and,.} am. . 

Let us now verify that the T a{3 correctly de
scribe the scattering, i.e., that on the energy sur
face Ea = Ef3 they are identical with T a{3· Ac
cording to (9) and (14), it is sufficient for this to 
show that 

(15) 

It follows from (11) that 

N a.f, = ((Da.l <D!l)- Oo:r;- ~ (<Da. I'!"~+)) ('¥~+)I (D{l). (16) 
r1y 

If processes of creation and annihilation are impos
sible, then in the sum over r ,r y none of the 
terms has a denominator that gives a singularity, 
and Na{3 is not singular for Ea = Ef3. Under 
these conditions (15) indeed holds, since the singu
lar terms of <'¥ai>Ir~>> and <<Pal'll~+>> are 
the same. 

~ 

~ The potential determined in terms of T a{3 and 
Tam by (7) is 

~ 'f 'f+ T' 7+ 
V - T + ~ a.y Y~ ' ~ -~m(3 

a.!l - a.(3 L.J E y - E ~ - iO ' LJ Em - E !l . 
Y m 

(17) 
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We transform (17) to an expression more conven
ient for study: 

+ ~ (d>a Iff- Ea / 'f~+)) ('f~+l / '¥~+)- PCD~) 
y 

m 

Comparing this with (17), we find 

Vex~= (iDa I H- Ea /P<D~)- (18) 

The Hermitian character of the potential that 
has been constructed can be seen directly from 
(18). By using (18) one can check by an elementary 
calculation that the Schrodinger equation with the 
potential V leads to the scattering amplitudes T a(3 . 
In fact, 

~ <+l ~ ~ ~ <+l 
~Vay(<Dy I'¥~ ) = ~(<Dcxl H- Ea I P<'Py) (<llyj':P'~ ) 
y y 

Consequently, < ;J? 0' I >¥~ >> is an eigenfunction of 
the Schrodinger equation in question, and to it there 
indeed corresponds the scattering amplitude T a(3· 

In just as simple a way one also proves the im
portant fact that the Schrodinger equation with the 
potential V will not contain any extra features: to 
each of its eigenfunctions there will correspond an 
eigenstate in the field theory for the same energy. 
Suppose, for example, f(3( a) is an eigenfunction 
of the Schrodinger equation for the energy Ef3. 
Then 

(H- £~) ~f~ ('!') PtDy = ~ f~ ('!') PcD" (<i\ I H-E~: PcDy) 
y ya 

y 

Thus to f(3 ( y) there corresponds the state 

6f(3(Y)P~y in the field theory. 
y 

We can summarize the properties of the poten
tial (18) in the form of the following theorem. 

The Schrodinger equation 

Eafy(x)-[- ~Va0/\(p) ~= Fyfy(a) (19) 
{l 

with the potential V a(3 defined by (18) has the fol
lowing properties: 

1) To each eigenstate >¥¥~ or >¥M=m of the 

Hamiltonian H of the quantum field theory there 

corresponds an eigenfunction of (19) for the same 
eigenvalue Ey,m• determined by the rules: 

<+l J --· (+) 
fy (a)~c<\a-Ea-Ey-iO(<Dalff-Ea/'P'y ), 

1 ~ . fm (a)~ E -E (<D, I H-E,! 'I"m) (20) 
m a 

[the bound states m here are only those that were 
used in the scalar product (1 0)). 

2) Conversely, to every eigenfunction fv> (a) 
(with outgoing wave) or fm (a) (for a bound 
state ) there corresponds in the quantum field 
theory an eigenstate >¥~+> or >lim, respectively, 
for the same eigenvalue, which is constructed 
according to the rules: 

nJ'<+l - '\' t<+> (a) p:n "Iy -.::..J y '-Vo:, 

3) In the range of energies of the colliding par
ticles in which creation and annihilation processes 
are impossible, the scattering cross sections ob
tained from (19) and from quantum field theory are 
the same. 

In conclusion we present an expression for the 
potential that is convenient for concrete calcula
tions, and that follows directly from (18): 

(22) 

The formula (22) explicitly shows the Hermitian 
character of the potential, its lack of singularities, 
and also the fact that V actually does not depend 
on the states >¥~+> and >lim. 

3. DISCUSSION 

The potential V that we have constructed is of 
course not the only potential that correctly de
scribes the scattering of the particles and their 
bound states [in the sense of Eq. (21)). In the 
derivation of V we have encountered a certain 
arbitrariness. In making the system P ortho
normal, we could have used instead of (12) the 
vectors 

(j)a = L;U~a <D~, (23) 
~ 

where U is an arbitrary unitary Lorentz-invari
ant operator, which can be written in the form U 
= 1 + U 1, and U 1 a(3 is a nondiagonal matrix that 
goes to zero if we set N = 0 and has no singular
ity at Ea = Ef3 when Na$ does not have such a 



586 M. A. BRAUN 

singularity. All the further arguments would have 
remained valid. Therefore one could also use as 
the potential the expression 

' + ~ ~ v •fl = ~ u •Yt (<Dy, I H - E. I P<l>y,) u y,(l (24) 

(we note that this is not a unitary·transformation 
of V). 

The cause of this sort of ambiguity is concealed 
in the very statement of the problem. We have been 
looking for a potential that gives the same scattering 
and the same bound -state levels as in the field the
ory. In ordinary quantum mechanics, however, one 
can have Schrodinger equations with different po
tentials corresponding to the same scattering and 
bound-state spectrum. The wave functions for 
these potentials will differ at small distances be
tween the particles, and therefore the mean values 
of physical quantities in a bound state will be differ
ent for different potentials, and in general will not 
agree with those found in quantum field theory. We 
indeed do not demand such agreement, however, 
since such a requirement is scarcely realizable 
in practice and seems extremely artificial from 
the theoretical point of view. Thus we get a whole 
set of potentials (24) that give equally good descrip
tions of the behavior of the particles within the 
framework of the problem as stated. 

The potentiaL (18) is distinguished from the 
others by its simplicity and convenience for cal
culations and by the absence of any arbitrary quan
tities not determined by the theory itself. For this 
reason, in our opinion, it is reasonable to adopt 
this particular equation (18) as the definition of the 
potential in quantum field theory. 

It must be remarked that the arbitrariness dis
cussed here bears no relation to the well known 
ambiguity in the expression for the fourth-order 
nucleon-nucleon potential. The reasons the latter 
ambiguity arises have been analyzed, for example, 
by Fukuda, Sawada, and Taketani. 5 

A few words about the spatial properties of the 
potential. Equation (18) gives the potential in the 
momentum representation. A Fourier transforma
tion leads to the potential in coordinate space, 

which is an integral operator with the kernel 
V(rt -r2, r1-r2), where r 1 and r 2 are the 
radii vectors of the two particles; that is, we 
arrive at a nonlocal interaction in the configuration 
space. As is well known, one cannot get a strictly 
local potential, if one requires that it describe the 
scattering correctly. In fact, the transition ampli
tude obtained from a local potential is analytic in 
the upper half of the energy plane and on the real 
axis; the same is true of the amplitude in quantum 
field theory. If we require that these amplitudes 
be exactly equal on some segment of the real axis 
of the energy plane (for which there is no produc
tion of new particles), then because they are ana
lytic they will agree also on the entire real axis. 
This cannot be true, however, since at high ener
gies new particles can be produced. Consequently, 
the idea of a strictly local potential must be re
jected. We shall not concern ourselves here with 
the question of the approximately local character of 
the potential in individual cases. 

In conclusion the writer takes occasion to ex
press his deep gratitude to Yu. V. Novozhilov for 
his constant interest and for helpful comments. 
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