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A general expression is obtained for the electric and magnetic susceptibilities when spatia'! 
dispersion is taken into account. It is shown that electromagnetic effects in a uniform me
dium can be described by means of a conductivity which depends on frequency and wave vec
tor and a magnetic susceptibility which depends only on the wave vector. A universal rela
tion is obtained between the conductivity and the magnetic susceptibility. 

IN recent years a number of papers have appeared 
which have been devoted to an investigation of the 
effects of spatial dispersion in the propagation of 
electromagnetic waves through matter. 1- 9 

In the papers by Ginzburg2 and Agranovich and 
Rukhadze3 the dielectric tensor (with spatial dis
persion taken into account) was obtained on the 
basis of phenomenological considerations. In 
papers by Shafranov,4 Drummond,5 and Klimonto
vich 7 this tensor was investigated for a classical 
gas of charged particles. We may note that in the 
classical analysis it is impossible in principle to 
take account of the diamagnetic currents. Quantum 
mechanical expressions for the dielectric tensor 
have been considered on the basis of particular 
models by a number of authors .1,8- 10 

In a paper by Nakajima, 11 a method developed 
by Kubo12 was used to obtain a general quantum 
mechanical expression for the current density in 
the case of a uniform medium:. This expression 
includes the diamagnetic currents. However, 
Nakajima did not obtain expressions for the mag
netic susceptibility and did not relate this quantity 
to the electrical conductivity. In the present paper 
we have obtained expressions for the magnetic sus
ceptibility and the conductivity in which spatial dis
persion has been taken into account. Certain prop
erties of the magnetization current have been de
rived and a universal relation has been established 
between the conductivity and the magnetic suscep
tibility. 

1. AVERAGING OF THE CURRENT DENSITY 

We consider a system with a weak electromag
netic field which is described by the vector and 
scalar potentials A ( x, t) and U ( x, t). The elec
tromagnetic field is not quantized. 
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In the approximation in which the field is linear 
the Hamiltonian of the system can be written in the 
form 

:Je = :Jeo + V, (1) 

where :JCo is the Hamiltonian of the unperturbed 
system and 

V = ~ p (x) U (x, t) dx- + ~ J lL (x) A'"' (x, t) dx. (2) 

Here 

(3) 
n 

is the charge density operator and 

J (x) = ~ (en/2mn) [Pn o (x- Xn) + o (x- Xn) Pnl 
n 

+ c curl h (.Ln o (x- Xn) (4) 
n 

is the current density operator for the unperturbed 
system. Pn is the kinetic momentum of a particle 
with the perturbing field neglected and Mn is the 
operator for the inherent magnetic moment of the 
particle. The summation is taken over all particles 
of the system. 

The system is described by the density matrix 
F which obeys the equation 

i1i F = [(:Je0 + V), F]. 

We assume that the perturbation appears adia
batically and that F - F 0 when t - - oo , where 

~ = 1;kT. 

Using a method analogous to that used by Naka
jima, 11 we obtain the following expression for the 
mean value of the change in current density pro
portional to the external field 

(Llj (x, t)) = j(l) (x, t) + j<2> (x, t), {5) 
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where 

t 

j~1 ) (x, t) = ~ dt' ~ dx' !fi~-t• (x, x', t, t') E. (x', t'), (6) 
-oo 

A2> (x, t) = ~ dx' !fl~-t• (x, x', 0, 0) +A. (x', t) 

- Ap. (x, t) Sp{ F 0~ :: o (x- Xn) }• (7) 

(3 

!fi~-t• (x, x', t,~t') = ~Sp {F0 J. (x', t'- in "A) J~-' (x, t)} d"A. (8) 
0 

Equations (5)- (8) becomes Nakajima's Eqs. 
(7)- (10) if we assume that the medium is uniform 
and neglect spin terms in the expressions for the 
current density (4). 

2. PROPERTIES OF THE RESPONSE FUNCTION 

a) Symmetry Properties 

In the representation in which JCo is diagonal 
<PJ.lv has the form 

!fl~-tv (X, X1 , (, t') = ~ e -iWmk (i-t') 

mk 

The following properties of <PJ.lv follow directly 
from this equation: 

1) Cfl~-t• (x, x'; t, t') 

depends only on the time difference t - t' = T. In 
what follows we denote this dependence by 
qJ f.l V (X, X' , T ) • 

2) !fi~-t• (x, x', -r)- is real, 
3) !fi~-tv (X, x', -r) = !fiv~-t (x', X, --r), 
4) !fi~-t• (x, x', -.,H)= 'P~-t• (x, x', --r,- H). 

Here H is a magnetic field. From 3) and 4) it 
follows that 

5) !fl~-tv (x, x', "·H)= !flv~-t (x', X, 't,- H). 

b) Properties of the Response Function for Coin
ciding Times 

In what follows the following relation, which can 
be easily verified by direct calculation, will be 
found useful 

[p (x'), J~-' (x)] 

=- i1i (all (x- x');ax;,) h (e~ fmn) o (x- Xn)· (10) 
n 

Whence we obtain 

so that for any function g (x') we have 

~ ag(x') 
!fi~-tv (x, x', 0) -,- dx' 

ax. 

ag (x) { "\."1 e~ } =-a-Sp F 0 LJ-Il(x-xn). 
x!l n mn 

Further 

(11) 

(12) 

~ 'P~-t• (x, x', 0) dx' = ll~-tv Sp { F 0 ~ (e~Jmn) o (x- Xn)} • 

(13) 

c) Relation Between the Response Function and the 
Correlation Functions 

Following references 6 and 12, we introduce the 
current correlation function 

(14) 

We denote the Fourier components of the func

tions 1/JJ.lv and cp J.tV by '?lt-tv and ';"f J.lV• so that 
for example 

~~-'• (x, x', w) = 2~ ~ e'"'~ ~~-'. (x, x', -r) d-r. 

Using Eq. (9) in a way similar to that given in ref
erens._.e 6 we obtain the relation between '?lt-tv(x, x', w) 

and <Pt-tv(X, x', w ): 

~~-tv (x, x', w) = 4'~-tv (x, x', w)!E~ (w). (15) 

Here E f3( w) is the mean energy of the oscillator 
for a given temperature 

Er; (w) = (1iwj2) coth (1iwj2kT). 

3. MAGNETIZATION CURRENT 

As is apparent from Eq. (7), the current j<2> (X, t) 
does not contain a delay with respect to the vector 
potential A (x, t). When w = 0, in the absence of 
an electric field the total current density of the 
system reduces to j<2>. Hence, when w = 0, j<2> 
has the significance of a magnetization current. 
When w ,c. 0 this simple significance no longer 
holds since j< 0 contains terms which are propor
tional to the induced electric field and, consequently, 
are proportional to the magnetic field. However, for 
convenience we will call the current j<2> the mag
netization current. We may note several of its 
general properties. 

a) The gauge invariance; this is easily demon
strated by means of Eq. (12). 
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b) div j<2> = 0. This property follows directly 
from Eq. (ll). It allows us to write j<2> 
= c curl M (x, t ); M (x, t) may be called the 
magnetic moment density of the system. [Actually 
M (x, t) has the meaning of a magnetic moment 
density only when w = 0.] 

c) Using Eq. (13) we can write j<2> in the form 

j~2 > (x, t) = + ~ dx' · cp~. (x, x', O)[A. (x', t)- A. (x, t)]. (16) 

From Eq. (13) it follows that J j<2> (x, t) dx = 0. 
d) From Eq. (12) we have 

a j~2> {x, t);ot 

=- ~ dx' ·Cfl~· (x,x',O) [E.(x', t)- E.(x, t)]. (17) 

e) As is apparent from Eq. (15), in the classical 
limit 

cp~" (x, x', -r) = ~ (Jv (x', 0) J ~ {x, -r)). 

Here the angular brackets denote averages over 
the classical canonical distribution. In this case 
a direct calculation yields j<2> = c curl Mel> where 

Mel=(~ flon o (x- Xn) k~ 2J (CA-m, H {Xm))). 
n m 

Mel is the classical paramagnetic moment density 
of the system. 

Thus we obtain a well-known result: the diamag
netic moment computed from classical mechanics 
is zero. 

4. CASE OF AN EXTERNAL FIELD THAT VARIES 
HARMONICALLY IN TIME 

Let EtJ.(x, t) = EtJ.(x)e-iwt. Then, using Eq. (11) 
we have 

j~1 ) (x, t) = e-twt ~ K!J.v (x, x', w) E. (x') dx', 

00 

KtJ.v (x, x', w) = ~ e1"'1 tf>tJ.v (x, x', -r) d-r. 
0 

(18) 

Using Eqs. (11), (17), and (18) (with w "" 0) we 
can express the total current density in terms of 
the electric field: 

(tlj!J. (x, t)) = e-1"'1 {Ev (x) ~ K~v (x, x', w) dx' 

+ ~ K~. (x, x' w) !Ev (x')- E. (x)] dx'}. (19) 

Here 
00 ' 

K, ( , ) 1 1 . o<p!J." (x, x , 't) 
IJ.V x, x , w = -too~ e' "'' a"' d-r. 

0 

The quantity KMv(x, x', w) is given by the 
relation 

K~v (x, x', <u) = K~v (x, x', w)- (i!w) cp~. (x, x', 0). (20) 

The divergence in K~v(x, x', w) when w = 0 is 
due to the fact that it is impossible to express the 
total current density in terms of the electric field 
alone when w = 0. In this case it is necessary to 
use Eqs. (16) and (18). 

5. CASE OF A UNIFORM MEDIUM 

In the case of a uniform medium <PtJ.v(x, x', T) 
depends only on the difference x- x' = r and, for 
a medium which has a center of inversion, is an 
even function of r. In what follows, for the case 
of a uniform medium we will designate the response 
function by <PtJ,v(r, T): 

{3 

tf>tJ.v (r, -r) = ~ Sp {F0 J. (0, -iliA.) JIJ. (r, 1:)} dA.. (21) 
0 

We list the symmetry properties of this function 
which follow from the results of Sec. 2: 

1) tf>tJ.v(r,-r)=q>v!J.{-r,--r), 

2) CfltJ.v {r, 1:, H) = CfltJ.v (r, - -r, -H), 

3) CfltJ.• (r, -r, H)= q>v!J. (- r, -r,- H). 

Let 
EIJ.(x, t) = EIJ.(k, w)e1 <kx-wt) etc. 

Then Eq. (6) yields: 

Here 

j~l) (x, t) = cr!J." (k, w) Ev (x, t). 

00 

cr!J.v (k, w) = ~ e1"'' ~ e-ikr cp~v (r, -r) dr d1:. 
0 

Equation (16) can be written in the form 

(22) 

{23) 

(24) 

j~2 ) = (1/c) ~ CfltJ.v (r, 0) [A. (x- r)- Av (x)] dr, 

whence, by means of Eq. (12) and the relation H 
=curl A, we have 

curl~ j<2>(x, t) 

= (1/c) ~ xtJ.v (r)[H. (x- r, t)- H. (x, t)] dr, (25) 

where 

From Eq. (16) and property b) of the current 
j<2> (cf. Sec. 3) we have 

j<2l = c curl M, M~ (x, t) = x~· (k) H. (x, t), 

where 
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X11v (k) = (kcf2 ~ x 11v (r) (e-ikr -1) dr. (26) 

It is clear from these relations that to describe 
electromagnetic effects in uniform media it is suf~ 
ficient to introduce a conductivity ut-tv(k, w) which 
depends on w and a magnetic susceptibility Xt-tv(k) 
which is independent of w. 

When w "' 0, in general it is not possible to in
troduce a magnetic susceptibility. From Eq. (19) 
we obtain the following expression for the total 
current density: 

Here 

(fl.jl'- (x, t)) = [a11• (0, w) + a~.(k, w)] E.(x, t). 

00 

a 11• (0, w) = ~ ei"'~ d-r ~ cp11• (r, -r) dr, 
0 

' 1 r . \ acp v (r, -r) . 
a11 , (k, w) =- TW ~ e""~ d-r.) 11 a-r (e-tkr- I) dr. 

0 

(27) 

The Kramers-Kronig relation and the fluctuation
dissipation theorem can be obtained from the fol
lowing formula 

00 ~ 

"' ~ . ~ 1 <PJLv (k, w') , 
a11.(k, cu) = -E ) ~11 • (k, cu) + t E-( ') , dw. 

Jl\(1) < {3 (I) (1)-(l) 

-oo (28) 

This follows directly from Eqs. (15) and (24) where 

$'11• (k, w) = ~ e-ikr4i"11v (r, w) dr. 

We may note the symmetry properties of ut-tv 
and Xt-tv which follow from Eq. (19) [the same 
properties are possessed by u' MV ( k, w)]: 

a~. (k, w) = a11v (- k, - w), ar.<v (k, w, H) 

= avJL (- k, W, - H). (29) 

The last relation is the Onsager relation. If there 
is a center of inversion 

Similar properties are possessed by Xt-tv(k). 
The properties in (29) are a particular case of 

the general symmetry properties of the kinetic co
efficients. 6 

The tensor Xt-tv is related to the tensor ut-tv 
by the following relation: 

00 

XJLv(k)= 27t;2c2 ~ dw{o11.~[a!r.(k,w)-a~.(O,w)) 
-co • 

- [cr~v (k, w)- a~. (0, w)J}. (31) 

Here 

a~. (k, w) = a 11v (k, u), H)+ a 11• (k,- w,- H), 

H is the magnetic field in the unperturbed Hamil
tonian. 

Thus the magnetic susceptibility is closely re
lated to the spatial dispersion of the conductivity. 

In the expression jt-1 = icEt-tvlkvxznHn the com
ponents Xzn do not appear when l or n are equal 
to z if k is directed along the z -axis. Hence 
the longitudinal part of XZn ( k) has no physical 
significance. 

For a given direction of the vector k, when 
k- 0, we can determine from Eq. (26) only four 
(transverse) components of the magnetic suscep
tibility tensor xzn ( 0) for a uniform magnetic field. 
In order to obtain all ten components of this tensor 
it is necessary to use Eq. (26) with k- 0 for three 
mutually perpendicular directions of k. In this case 
the diagonal components of the tensor XZn appear 
twice; for example the component Xxx is obtained 
when k is along the y axis or along the z axis. 
In the first case 

X - 1 L 2d - 1 \ 2d 
XX- -2c2 .)XxxY r- -2c2 ~Cf'zzY r, 

and in the second case 

These integrals are equal because of the relation 

~ ~ Cf'xJL (r, 0) vr.< (xy 2) dr = ~ ~ Cf'w. (r, 0) vr.< (y 2x) dr = 0, 
JL r.< 

which follows from Eq. (12). 
A comparison of the results obtained for k - 0 

for three mutually perpendicular directions of k 
leads to. the following expression for the complete 
tensor Xt-tv ( 0): 

XJLv (0) =- 2!2 H + ar.<V ~cr •• (r' 0)- Cflr.<v (r, 0) J r2dr. (32) 
" 

In the case of a fixed uniform (i.e., varying 
only slightly in a distance of the order of a corre
lation radius) field the magnetic susceptibility 
Xzn ( 0) is related to the specific magnetic moment 
bytherelation XZn(0)=8Mz(H)/8Hn, where H 
is the magnetic field in the unperturbed Hamiltonian. 

In this work we have used the conventional 
scheme of a self-consistent field in which the re
mote interactions are included in the macroscopic 
electromagnetic field which satisfy Maxwell's equa
tions; only the near interactions appear in the un
perturbed Hamiltonian. In this scheme the electro
magnetic fields E and H are the resultants of the 
fields of the external sources and the fields pro
duced by the charges and currents of the system. 
However, it is possible to include all interactions 
between the particles of a system in the unperturbed 
Hamiltonian; in this case, by E and H we are to 
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understand the fields of the external sources. 
The authors are indebted to Prof. L. E. Gurevich 

for advice and valuable discussions. 
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