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Explicit formulas for the polarization and angular distribution of (3 electrons in. second 
forbidden transitions involving V and A coupling are derived. The angular correlations 
in unique transitions are examined in the case of arbitrary order of forbiddenness. Unique 
second forbidden transitions are treated in detail. 

1. SECOND FORBIDDEN TRANSITIONS aj = 2 (no) 

THE results of a great number of recent papers 
indicate that the time reversal invariant vector 
and axial vector interactions play the fundamental 
role in (3 decay processes. Together with the 
further refinement of these results it becomes of 
interest to investigate the forbidden (3 transitions 
with the aim of determining the nuclear matrix 
elements. Many papers have been devoted to the 
study of forbidden (3 transitions. However, de­
tailed explicit formulas for the angular distribution 
and polarization of (3 particles have been given 
only for transitions of first order of forbiddenness. 
In the present paper we consider (3 processes of 
second and higher order of forbiddenness. Since 
the method of calculation has already been described 
in a series of papers, 1 we give at once the final for­
mulas. 

a. Angular Distribution of (3 Electrons for Second 
Forbidden {3 Transitions in Oriented Nuclei 

We shall characterize the orientation of the nu­
clear spins by the quantity 

(1) 

where j0 is the angular momentum of the initial 
nucleus, fJ.o is its projection on the axis along 
which most of the nuclear spins are oriented 
(chosen as the Z axis ) , w ( fJ.o) is the probability 
that the nucleus has a spin projection with the value 
fJ.o, and c::: are Clebsch-Gordan coefficients.2 

The number g is even for aligned nuclei, and even 
or odd for polarized nuclei. 

where fg are quantities which are tabulated in 
the papers of Cox and Tolhoek. 3 
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The angular distribution for second forbidden 
transitions with a change of the nuclear spin by 
two units (I j 0 - hI = aj = 2) and without change 
of parity is given by the formula 

w(j 0p) =I+~ ~ rg(jo, j1)B8 (E, q, p)Pg(cos:;}), 
g=I, ... ,4 

(2) 

where j 1 is the spin of the nucleus after the (3 

decay, P g (cos 8) is the Legendre polynomial in 
the angle of the electron momentum vector 
p (p, 8, cp ), E is the total energy of the electron 
(including the rest mass), q is the momentum 
(energy) of the neutrino (we choose units for 
which li = m = c = 1 ) , 

where W (abed; ef) is the Racah function (tables 
of Racah functions are given in reference 4), and 

(3) 

Assuming uniform distribution of the charge over 
the volume of the nucleus, we have V = 6aZ/5R. 
For the case where the charge is distributed over 
the nuclear surface, we find V = aZ/R ( Z is the 
nuclear charge, R is the nuclear radius). 

The quantities ai are equal to 

a1 =c 11 (P 2 + IJ 2 ) + (121J4 + laP4 + I<~PV) + I51J (P 2 + -} IJ2), 

a3 c= ~1 (qt + ~· p2) + ~tq (p2 -1· q2). 

The quantities Ai for different values of g 
have the following values: 

(4) 
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g= 1: 
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A1 = (tf'IQ4 + 'f2P4 + 'flaP2Q2) 

+ <!(4Q (P2 + Q2) + 'floP2 + 'faQ. 

A2 = q Ct·IQ2 + )..2P2) + ()..aq2 + )..4p~). 
As= rp7q (p2 + f q2) + 'fls (p2 + !s q2), 

A ( 125 2 2) 
4 ='fig Jf6 q + p , 

g= 2: 

A1 = P [q (XIQ2 + X2P2) + (XsQ2 + X4P2)], 

A2 = p [(wlq2 + w2p2) + WaQ + w4], 

As= A4 = 0, A5 = w.p, A6 = p (w6q + w7); 

g=3: 

Al=-2V'!sP2 [(-12 'f2Q2+ ; 6 'faP2) 

+ tf/4Q + 'fls J , 
A2 = -2V7!aP2()..2q + )..4), 

A a=- 2 J/ 7/a P2 (rp7q + 'fs), 

A4 = - 2 v·;; 'fgp2 • 

g=4: 

A5 = 0, A = - 2 V7/).. p2. 6 f 3 6 t 

(5) 

The coefficients 'Yi• 1], t'i, 'Pi• A.i, Xi• and wi, 
which depend on the coupling constants and on the 
three nuclear matrix elements, are given in Appen­
dix A. 

In expression- (2) we have made the approxima­
tion ( aZ )2 « 1, ( aZ/p )2 « 1. In the limiting 
case where Z » 2A 1/ 3 E (A is the mass number 
of the decaying nucleus ) , the angular distribution 
no longer depends on the nuclear matrix elements, 
as in the case of unique transitions. In this case 
we have 

w(j0p) = 1- ~ ~ rgBgPg(cosft), (6) 
g=J.2.3 

where 

wl = V6(fq2 + :5 p2). 

w = - ~ v 14 p2 ,. = ..!Q_ q2 + ~ p2. 3 25 , c; 3 5 

Formula (6) corresponds to the two-component 
theory of the neutrino. 

b. Longitudinal Polarization of the {:3 Particles 

For [r transitions with Aj = 2 (no), the longi­
tudinal polarization vector for the rr particles in 

the rest system of the electron can be written in 
the form 

The quantity a~ is different from ~ in that the 
constants l3ik (which enter in the coefficients 

(7) 

'Yi> 1], and t'i) are replaced by the constants O!ik: 

i,k=V,A T. (8) 

Ci and Ci are the coupling constants of the 13 in­
teraction corresponding to the terms which, respec­
tively, do or do not conserve parity. b~ = Va2 + a3, 

where we also replace the l3ik in the quantities a2 

and a3 on the right hand side of this equation by 
the O!ik· 

ce = 2 Im [x1q(q2 + 1 p2) + x2 (q2 + ~o p2)]. (7') 

The energy dependence of L a2, and a3 is 
given by (3) and (4). The coefficients Ki which 
depend on the constants C, C' and the nuclear 
matrix elements, are given in Appendix A. 

If the strong interactions are invariant under 
time reversal the combinations of matrix elements 
entering in Ki are real. A possible violation of 
time reversal in variance in 13 interactions is de­
termined by the third term on the right hand side 
of (7). In the two-component theory of the neutrino 
O!ik = l3ik and a = 1. 

In (7) we made the approximation ( aZ )2 « 1 
and ( aZ/p )2 « 1. If Z » 2A1/3 E for a given 
nucleus, the formulas for the longitudinal polari­
zation no longer depend on the nuclear matrix ele­
ments: t = -p/E (here we use the two-component 
theory of the neutrino ) . 

We note that the general form of (7) is the same 
for 13 transitions of arbitrary order of forbidden­
ness, where the energy dependence of a, b, and 
c is determined by the order of forbiddenness. 

2. UNIQUE TRANSITIONS Aj = N + 1 

The formulas for the angular correlations in 
forbidden 13 transitions of the unique type, in 
which the change of the nuclear spin exceeds the 
order of forbiddenness by one (i.e., Aj = ljo- hi 
= N + 1 ), do not depend on the nuclear matrix ele­
ments. It is therefore impossible to obtain from 
a study of the unique transitions, any information 
about the structure of the nucleus, except informa­
tion on the angular momenta and the parities of the 
nuclear levels. The latter, though, is the most 
definite information on these quantities that we have. 



ANGULAR DISTRIBUTION AND POLARIZATION OF f3 PARTICLES 555 

The unique transitions are determined by the 
Gamow-Teller interaction, where apparently only 
the axial vector (A) coupling gives a significant 
contribution. 

In this part of the paper we consider the angular 
distribution and polarization of f3 particles for 
unique f3 transitions of arbitrary (N-th) order 
of forbiddenness in oriented and non -oriented nu­
clei. The detailed form of the formulas obtained 
is given for the case of second forbidden transitions: 
~j = 3 (no). 

a. Longitudinal Polarization of f3 Electrons 

We shall characterize the polarization of the 
electrons by the angle x between the electron 
momentum p and the direction of the spin t. 
The polarization is then given by the formula 

w(Cp)= I +~cosx_. 

In the approximation ( aZ )2 « 1, ( aZ/p )2 « 1 
(the exact formulas are given in Appendix B) we 
have 

~ P ( arr-aAA al 2Ima_\r .) 
-.=£+!.\ ~rr+~AA -p ~rr+~AA dN'' 

L). = 2 (Re ~r A) I (~rr + ~AA), (9) 

where Cl!ik and /3ik are given by (8). The weakly 
energy dependent coefficient dN is different for 
different orders of forbiddenness of the f3 transi­
tion, N: 

odN = h~r (j + -!J)-l, 0 = h~r, 
j 

N 4N (2N + 3) (N !)2 p2i-lq2N-2i+l 

~i = (2N+1)! (2j)!(2N-2j+2)! (10) 

The summation in (10) goes over all half odd inte­
ger values of j with j < N + 1. 

It is seen from (9) that the interference terms 
(between the interactions T and A) violate the 
time reversal invariance. However, this interfer­
ence is apparently absent in the f3 interaction. 

For "pure" T or A coupling we obtain:* 

(9') 

b. Angular Distribution of the Electrons 

If we characterize, as before, the orientation of 
the nuclear spins by the quantity Pg [see formula 
(1)], the angular distribution of the electrons 
emitted by oriented nuclei in unique transiti'ons 
has the form 

*Here, as well as in the analogous formlllas below, the 
upper indices refer to T, and the lower indices to A. 

2N+1 

<t'(ioP)=l+ ~ rg(j0,j1)Bg(E,q,p)Pg(cos!it). (11) 

Here 

rg = U(hN +!jog; ioN+ l)Pg• 

pReS aZ Im S ' 
oBg = ag + EQ -X b<r + EQ _ Xbg, (12) 

bg = "B ~r,w. 
j 

(13) 

In the general case of N-th order of forbiddenness 
the numerical coefficients ~f and 11f are given 
in terms of the Racah functions and the Clebsch­
Gordan coefficients: 

~f = (-/-'i'Ji(2j + g -+- I) (2j- g) (2g +I) (2N + 3) 

xCJ:!_,1,oi-'ho W (N- j +IN+ I jg; jN + 1), 

g- even; 

"r1f = (-/-'/, Jf g (g + I) (2g + I) (2N + 3) Cf~'l,oi+';,o 

x W (N- j + I N + I jg; jN + I), 
g- odd. 

For "pure" T or A coupling we have: 

(14) 

p 2 ReCC'" 
oBg = ag ± y I c 12 + I C' 12 bg. (12') 

The numerical values of the coefficients Rj2>, ~f· 
and 11f for second forbidden f3 transitions ( N = 2) 
are given in Appendix C. 

c. Polarization of Electrons Emitted by Oriented 
Nuclei 

The probability for observing an electron with 
momentum p and polarization t in unique f3 
transitions is 

2N+1 

w(j 0 , p, C)= I+ ICJcosx + L} rgBgPg(cos!it) 
g~l .... 

+ ~ rgCg,fgs(&, x_, (J)~ (15) 
g, s 

The directions of the vectors j 0, p, and t and 
the angles between them are given in the figure. 
The values of It I. rg, and Bg are determined 
by the corresponding formulas (9) and (12). The 
index s in the last term of (15) takes on the values 

s = g, g ± 1, so that the summation over s goes 
from s = 0 to s = 2N + 2. Furthermore, 
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~z . . + EQ-X(-igReS-J-lc;,ImS), 

kt, = 23 fl)f · -i (En± Ei-'r,). 
j 

l gs = 23 fl)fCi, 
j 

( _ "\.> <mf'!r. ( · + _!_)-t 
gs-LJJJ/<.,1 1 • • 

j -

t , ,,<mN (• 1)-1 
g=LJJJj'tj 1+2 . 

j 

(16) 

The angular dependence of F gs ( J, x. w) for 
different values of s and g is expressed in the 
following form: 

F .I ;1 (2g + n . . P, ( "") """= V g(g+i) smzsmw g cosv, 

r-3-
+ Jl -----=+=1" sin x cos wP~ (cos&), g. 

Fr;.r:-1 =- V3gcosx:P ... (cos&) 

+ V3ig sin x ccs wP~ (cos&). 

Pk( cos J) is the first associated Legendre func­
tion. The constants Q, X, and S are given by 
(13). 

In the general case of N-th order of forbidden­
ness the coefficients EjA.• &j, and Tj are given 
in terms of the functions of Racah and Fano5 and 
the Clebsch -Gordan coefficients: 

Ej).=(-)l-t(2j-j- 1)(2/-j- l)V2(2g+ 1)(2N-j-3)C~;;Io 

x W (jN + I jg; jN ·+· I )X (lis, jjg, -i + I), 
g-- odd, 

~i~~(-rr-' 1'(2j+ I)J/4j(2j+2)(2g+ 1)(2N+3) 

xC'0 1 . I W'(iN + ljg; jN +I) 
J- 2 oJ+--:! n 

( • 1 . I . . 1 1 I) 
XX 1-l----:;1--;;S,Jlg,22 • g-even 

"i=(-/-'1'(2j+ 1)V(2N+3);3C~0 1 . 1 
J-2 01+2 0 

X w (iN + 1 jg; jN + I), g-odd 

l = j + ).., ).. = ± ~ , i = N- j + I. (17) 

A significant polarization of order "'p/E of the 
electrons in the direction [ p x j 0 ] can be observed 
only if time reversal invariance is violated and 
if there is TA interference. If time reversal 
invariance holds, or if there is no TA interfer­
ence, the polarization in this direction is ,..., aZ/E, 
i.e., small as compared to unity. 

In the case of "pure" T or A coupling the 
quantity aCgs [formula (16)] is given by 

+ 1 _ p 2 Re CC'* l 
crC t;"S = k<:s- E k'<"s ± y I C 12 + 1 C' 12 gs 

(16') 

The numerical values of the coefficients E~~s>, 
t~gs>, and T1g> for second forbidden {3 tfansi­
tfons are given in Appendix C. 

All formulas quoted above correspond to {3-
decay. In the case of positron decay we must make 
the following substitutions in these formulas: 

c.4 ->- c~. c~->- c;, Cv, T->- c~. To c~. T->-- c~. To 

aZ ->-- al. 

APPENDIX A 

Coefficients Yi· 7], and t"i in the expressions 
(4): 

'Yj = 1 ~5 (31 KA 1 2 ~ AA + 21 Kv l 2~vv + 2 JF6 Re KAK~~ AV); 

C1 = -;-;5 (V2~vvReKvL~ + VfReKAL~~Av); 

Nuclear matrix elements: 
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KA = [C,fi.~-tF1~ 4;,~-t,aY~~4I.~-t/2 dr; 

Kv = [C,fJ.~-t,l-1 ~ 4;,~-',Y;A4i,~-t/2 dr; 

L C iol-'o -1 \ ,1," · y-1*,1, d 
V = ( 2Ai.~-t 1 ) J 'ri.~-t 1l:X 2A 'rlo~-tl f · 

In these expressions u and a are the four­
rowed Dirac matrices, and Y£A is the spherical 
vector function. Its components are expressed in 
terms of the spherical functions: 

(YIA]y= (- ) 1-yCt~T, Ml. -y y L+T, M, 

M = A+ 'f, 'I= 0, ±I. 

The scalar product of two vectors (AB) is here 
conveniently represented in the form 

(AB) = L}(-?AyB-y, 
y 

Ao = Az, A±1 = ±(Ax± iAy) I Jf2. 
Coefficients cf'io A.i, Xi· and Wi in the expres­

sions (5): 

cp4 = + V + (V3 R.e KAL~a, AV- Jl"2a,vv R.e KvL~) ; 

cp6 =-+ V1 (+I KA I21XAA + + IKv I21Xvv 

cp7= ::6 V6(f1KAI 21XAA-11Kvi 21Xvv 

- Vf(a,l I p) Im KAK~a,Av); 

cps=- :6 V f[R.e(V3KAL~Av-Y2KvL~a,vv) 
+ (a,l I p) Im (JI3 KAL~a,Av + V2 KvL~a,vv)]; 

-3 V6 R.e KAK~a,Av 

+(a,ZI2p)v --i;(7E+E-1)ImKAK~a,Av]; 

A-3 =- (2 I JfT5) [1Xvv R.e K vL~ 

- (a,Z I 4p) (5£ - E-1) a,vv Im K vL~]; 

A-4 = (61 25 V5)[Jf2R.eKAL~Av- J13a,vv R.eKvL~ 

+(IXZ 1 12p) (7£- E-1) Im(- V2 KAL~a,Av 

- (a,Z 1 4p) y6 (5£- E\11) Im KAK~a Av]; 

A-6 = (3 V 6; 625) [-I KA j21XAA + 2jl( v I21Xvv 

E v - E + p2 v-1; 

Xt = (V141100) (1XZ/p)(J Kv 12 ~vv- V6 Re KAK~ ~Av); 

x~ = (1;30 y 14) (1XZip) (J KA 12 ~AA +I K v \2 ~vv 

-51/{=ReKAK~~Av); 

Xa = (VI4;180) (aZ/p) [5£ J Kv 12 ~vv + 3 (£ + V) I Kv 12 ~vv 

+ 9 YIO ~vv Re Kv L~]; 

X4 =- (6/125 yT4) (a,ljp) [-£ E (j KA 12 ~AA -1 Kv 12 ~vv 

-7VfReKAK~~Av)+ :2 (E+V)(JKA/2~AA 

+ ~ Vf (Jf2R.e KA L~ ~Av- V3Re K v L~· ~vv) 

+ (a,Z;pp 7;V6Im KA K~ ~Avj; 

W1 =- (Y14;15) (11 KA / 2 ~AA + tiKv / 2 ~\T 
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11114 v- . v- . 
Wa = 3 r t ( 3 Re KA Lv ~AV- 2 ~vv Re Kv Lv); 

V- (1 1 w6 =-(3 14;125) 2IKAI2 ~AA+3lKvl2 ~vv 

+V~ReKAK~~Av); 

w6 =- (V14;25) (-I KA 12 ~AA + ~ IKv l 2 ~vv); 

w7 =- t V¥<V3ReKA L~~AV + V2~vvReKvL~). 

Coefficients Ki in the expression (7'): 
2 v2 . 

x1 = 25 3 KA Kv ocAv; 

APPENDIX B 

Expressions for the angular correlations in 
unique transitions have been given in the appro xi­
mation ( aZ )2 « 1 and ( aZ/p )2 « 1. To obtain 
the exact formulas for arbitrary Z, we must 
make the following changes. 

1. In the expressions for u in (10) and ag in 
(12) we must replace ,q)f by Df. where 

of= [x (EQ- X)P !llf p1- 21 [(2j) !!]2 

WJ = 1- 3 (xR)2/10 (j + 1). (B.1) 

Here K2 + 1 = (E + aZ/R)2 in the case of a uni­
form surface distribution of the nuclear charge 
and = (E + 6aZ/5R)2 in the case of a uniform 
volume distribution. The ap .. are coefficients 
determined by the condition of smooth joining of 
the radial parts of the electron wave function in­
side and outside the nucleus. The values of ap~, 

are given in the tables of Sliv and Volchek.6 The 
expression 

i I g=1 I 
1 ~y3 
2 3 --
3 1 y--
2 10 3 

3 10 

2 3 
----

5 ~y3 2 

g=3 

0 

3 y---5 (i 

-fv6 

[kds + (EX- Q) (EQ- Xt1 k~] 

in formula (16) must be replaced by 6jnf, but 
in the curly brackets in the expression for nf 
[formula (B.1)] we must have 

ia2 1 8 1 (Q + X) +a~ 1 8. 1 (Q- X)} · 
) 1 2 12 ,_2 /-2 

2. The expression 

(EQ -X)-1 ~,qif "'f [PReS+ ocz(j + tt 1 Im S] 
j 

in the formulas (12) must be replaced by ~rf 1Jf, 
where J 

rf = 2 [x (EQ- X)P flJf P1- 21 [(2j) !!J2a. 1 a 1 ,_ , __ 

. " aZ 0 SID Vj = - (. '/ ) COS j 
P I+ z 

= _ aZ f i ( aZ )2]-•;, . 
P (j + 1/z) I + P (j + 1/2) 

2 2 

(B.2) 

Exactly the same changes have to be made in the 
terms of (16) which contain Zgs and Zgs (with 
the coefficient t j ) . 

In the quantities of (16) containing tg and tg 
we must make the substitution (B.2) (with the co­
efficient Tj ), but in the curly brackets in (B.2) we 
must have 

{cos o1 Irn S +sino; ReS}. 

For example, the exact expression for the longi­
tudinal polarization of the electrons in unique tran­
sitions is then written in the form 

~ = 2Jrf / 'jJ of. 

APPENDIX C 

Numerical values of the coefficients in the ex­
pressions (10) to (17) for second forbidden transi­
tions (N = 2 ): 

I g=5 I j I g=2 I g=4 

0 
1 

0 0 2 

0 
3 2 y-- 0 
2 -5 15 

10 v-2i 33 
5 4v- ay--
2 -7 15 7 22 
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g=2 I 

i 
g~4 i I g=1 

't(_g) 
I 

I g=3 I g=6 

I s=L I S=3 I S=-=3 I S=5 
l tV~ 

1 0 0 0 Ll 
2 --

~v~ -~-V~ ~ 
0 0 ., 

0 0 
2 

~ }V~ -~v~ 0 
5 7 

0 
~v·~ -~v ~ -~v-~ !_ v llO 

2 ' 5 21 3 21 3 I~ Hl~ -fV~ ~v~ 7 3 

I I 
g=1 

I j A 
I s=O 5=2 

l 2 0 
1 2 3 

2 1 2 !_ y2 
2 9 0 

---
l 2 -~¥2 

3 2 3 15 

2 1 2 ~¥2 2 6 
--

1 2 _!_v-2 
2 3 21 

5 

2 
1 JO 8 -v-
2 21 2i 2 
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