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A connection is established between the definitions of the probability of a state and the dis-
tribution functions given in the papers of various authors, based on the example of a trans-
port equation for a charged particle in an external electromagnetic field.

A random function which determines the number of particles in a volume element in
phase space is introduced. The electromagnetic field strengths or the numbers of oscil-
lators are also considered as random functions. The set of equations for these functions
serves as the basis for deriving a chain of equations connecting the moments of the random
functions or the corresponding distribution functions of different orders. Through an ap-
proximation to this chain of equations we obtain a set of relativistic self-consistent equa-
tions. We give relativistic expressions for the dispersion equations for the transverse and
longitudinal plasma waves. A variational principle for a relativistic plasma is considered.

THE possibility of a consistent derivation of the
relativistic transport equations for a plasma is of
interest in connection with the increasing impor-
tance of the theory of the high-temperature plasma.

The most general method to obtain approximate
transport equations in the non-relativistic approx-
imation is Bogolyubov’s method' which is based
upon an approximate solution of a chain of equations
for distribution functions.

One must also construct a chain of relativistic
equations for distribution functions to derive the
transport equations in the relativistic case. Dif-
ferent forms of approximating higher distribution
functions in terms of lower ones in such a chain
makes it possible to obtain the appropriate trans-
port equations: the equation with a self-consistent
field, the Fokker-Planck equation for a relativistic
plasma, the transport equation taking radiation into
account, and so on. The present paper is also de-
voted to this problem.

The number of papers in which the relativistic
transport equations for a plasma have been con-
sidered is very small.2™4

In the papers by the author? an equation was ob-
tained for the distribution function of a system of
charged particles in an electromagnetic field. A
relativistic dispersion relation for the transverse
and longitudinal waves was found in the self-con-
sistent approximation for the distribution function
of eight variables. We found relativistic equations
for the quantum distribution functions for scalar
charged particles and for electrons. A relativistic
quantum equation with a self-consistent field was

524

considered for scalar charged particles. The nor-
malization condition for the distribution function,
given in reference 2, may be replaced by a simpler
one in those cases when the rest mass of the sys-
tem of particles under consideration remains con-
stant.

Belyaev and Budker?® considered, for particles
with a Coulomb interaction, a relativistic transport
equation which was a generalization of the well-
known Landau transport equation. On the basis of
that equation they considered the energy and mo-
mentum transfer problem from one gas to another.

In Clemmow’s and Willson’s papers* a relativis-
tic transport equation was obtained for the basic dis-
tribution function of seven variables F (t, q,p),
without taking collisions into account. A relativ-
istic dispersion equation for longitudinal plasma
oscillations was found and studied.

Since equations for different distribution func-
tions are used in the papers mentioned, we first
establish a connection between the equations and
distribution functions used in the various papers
by using as a simple example the transport equa-
tion for the distribution function of the variables
of one charged particle.

1. RELATIVISTIC DISTRIBUTION FUNCTIONS

When a charged particle moves in an electro-
magnetic field the square of the four-momentum

G = E(Pt —%A{)z = —mf,c?.

is an integral of motion. Here Pj and Aj are
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the four-momentum and four-potential. Using
this expression for G we obtain the relativistic
equation of motion for a charged particle:?

dg; 1 0G 1
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We introduce a distribution function of eight
variables f(qj, Pj), defined in such a way that
the four vector

Ji= {uf (q;, Pi)d"P
is the same as the particle-current four vector.®
We can then, in the case of a constant rest mass,

write down for the distribution function the equa-
tion of continuity in (qj, Pj) space:2

5(%”)*3%(?;1“):0 @

If we integrate (2) over the spatial coordinates and
over all momentum components we get

d 0 ( (E—ep) .,
a0\ Tadp = 5\ CoiB favgaeP = o,

2
myc

and we can therefore consider the expression

Ft digasp = fE— 2 grgasp 3)
as the probability that the particle finds itself at
time t in the spatial volume element d3q around
the point q and has values of its four-momentum
in the region d*P around the point Pj; it is nor-
malized to unity.

We can write (3) in a more symmetric form if
we introduce the four-vector of the hypersurface
element dSj. We can then write instead of (3) the
more general expression f| (uj/c)dSj| d*P which
determines the probability that the world line of
the particle intersects the hypersurface element
dS;j and that the four-momentum has a value in
the region d*P around Pj. Such a definition was
given in a paper by Stratonovich.* Choosing dif-
ferent orientations of the hypersurface element
we can obtain instead of (3) other particular
definitions.

The equations given above are the same as the
ones given by Belyaev and Budker® with the only
difference that in reference 3 the function 3C

*] express my thanks to R. L. Stratonovich for acquainting
me with his unpublished work.

= -V G was used instead of the function G.

It is possible to define the probability for a
state by expression (3) because Egs. (2) are writ-
ten for the case where the distribution function
does not depend explicitly on a parameter charac-
terizing the trajectory of the motion of the particle
in four-dimension space (world line). One can
choose the proper time as such a parameter. This
problem will be considered in the following in more
detail in connection with the quantum generalization
of the results stated.

It is in many cases convenient to use instead of
a distribution function for the variables qj and Pj
a distribution function for the variables q; and p;
= Pj — (e/c)Aj. The equations of motion take in
that case the usual form

dg,/ds =u;=p,/my, dp,/ds=(c/c) Fipti.

We shall write down the corresponding equation of
continuity in these variables. Its three-dimensional
form is

<8 Ly ud +e0p{71-: q -i—[uxH]}f-l—e(uE)(%:O. “)

Here

v=VT1—u/c®, u=p/m,.

In these variables we get instead of (3) the expres-
sion f(&/mgc?)d3qd’p.

Because the mass of the particle is constant, the
relation Ep% -mc? exists between the compo-
nents of the four-momentum pj. This makes it
possible to simplify (2) and (4) by integrating, for
example, over p, and reducing them to the equa-
tion for the distribution function of seven variables
F (t,q, p). To do this we first clarify the meaning
of this distribution function.

Any element of the pseudo-sphere Zp% = —mzc2
is perpendicular to the vector p;. If we denote the
vector of the hypersurface element in qj -space by
dS, and in p. -space by dSi‘p), we have dSEp) I p;-
The probability that the world line passes through
a hypersurface element dS; while the values of
p; lie within the hypersurface region ds{P’ will
therefore be proportional to the scalar product
ds;ds{P). If the vector of the hypersurface element
dSi is in the direction of the time axis, we get for
the probability for a state the expression
F (q, p, t)d?‘qd3 , where F (q,p,t) is an invari-
ant function of seven variables. Such a definition
of probability was used by Clemmow and Willson*
and in earlier papers (see Synge’s book® ). We
shall find a connection between the functions
f(aj» pi) and F(q, p, t) and obtain an equation
for F(q; p,t), starting from Eq. (4).

&="L—co,
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Taking it into account that only states lying on
the surface Zp}= -mjc? are possible, we intro-

duce a function F (qj, p;) such that
f(q;,p,) (8/myc*)d?qd*p

= F(q, pi)8(&—c]/ mic® + p*) d'qd*pdé.
From the expressions given it follows that

F(@.0, ) =(F(g,p)s@&—c)/ me+ ) dg. (5)

As a result we obtain the following equation

%—f+v%§+e{E+%[va]}g§=0- (6)

This equation is the same as the one given in the
papers by Clemmow and Willson.* If we go over
from the variables q, p, t to the variables q, Vv,
t, we get for the probability of finding the particle
in a volume element of phase space the expression®*

F(t q,V) mg~(5d3qd3v.

Using the distribution function F (t, q, p) we ob-
tain expressions for the density and the current
from the formulae

p=e{F(a,p Od%, j=e{vF(a,p t)d%. (1)
We must note that in the general case the equa-
tion for one distribution function is insufficient to
describe relativistic processes. Indeed, when in-
troducing the function F (qj, pj), one must take
into account the possibility of states with negative
energy values, i.e., put

1an )= F @, p) - {p8—c |V M+ 77)
+3(E+ )/ e ).

We get in that case instead of one Eq. (6) a set
of equations for two functions F* and F~:

OFE | oFt . oF =
:}:a_t—}-qu-—l—e{E—z_Clva]}(% = 0. (8)

The positive sign corresponds to a positive energy
value and the minus sign to a negative one. The
equations for F* and F~ differ only by the sign
in front of the first term. We shall consider (8)

in more detail in the following in connection with
the derivation of transport equations that take pair
production into account.

*A relativistic transport equation with a self-consistent
field for the function F(q, v,t) was also considered in A. A.
Vlasov’s book Teopust MHorux yactuy (Many-Particle Theory),
Gostekhizdat, 1950.
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2. A CHAIN OF EQUATIONS FOR THE RELA-
TIVISTIC DISTRIBUTION FUNCTIONS

There are two possible ways of obtaining chains
of equations for the relativistic distribution func-
tions. One is a direct generalization of Bogolyubov’s
well-known method to the relativistic case. To do
this we must consider distribution functions both
of the particle variables and of the coordinates
and the momenta of the field oscillators. Some
non-relativistic problems with such distribution
functions were considered in references 6 — 8.

. We shall obtain the chain of equations by a
slightly different method, based upon the use of

a set of equations for the random function Ngp(t)
and the electrical and magnetic field strengths,
which are also considered as random functions.
The function Ngp(t) is defined in such a way
that the expression

Nqpd®qd®p = 2 3(q—q®)8(p —p) (9)

1SISN

determines the number of particles at time t in
a volume element of phase space d®qd®p around
the point q,p. Equations for the random functions
Ngp for systems of particles with a central force
interaction were considered, for instance, in ref-
erences 9 —11. A set of equations for the function
Ngp and the vector and scalar potential served in
a paper by the author!? as the starting point for
considering the space-time correlation functions
for a system of charged particles with an electro-
magnetic interaction. We shall use the results of
that paper to a large extent in this section.

If we can forget about states with a negative
energy, the equation for the function qu(t) is
formally the same as (6):

N 1 ONg,
4

Y
ey v—a—(;‘--'?-y-p{E —{——[va]}a—p= 0.

(")
In order that the set of equations be complete, we
must still add the equations for the electromagnetic
field

1 0E 4 .
curlH =~ % 4 4z g VNgpd®p,  divH =0,
curlE = —+ M divE = 4re ( Nyyd'p —npj.  (10)

The set (9) and (10) is also a closed set of relativ-
istic equations for the random functions qu, E,
and H, which describe different states of the
plasma electrons and the electric and magnetic
field strengths. In the following we assume that
the role of the positively charged ions is reduced
to the role of a background which compensates the
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charge of the electrons. One can consider the more
general case in a similar manner.

If we take states with a negative energy into ac-
count we must introduce two random functions
Nakp(t ), the equations for which are formally the
same as (8). In a corresponding fashion the ex-
pressions for the density and the current on the
right-hand sides of (10) are also changed.

As an initial set of equations we can use the
equation for the random function of eight variables
4ij,» pj,» defining it in such a way that the expression

1
Ny ptd%qd'p = 2 —58(q—q®)3(p, — pP) 1d°qd*p
ISISKN
(11)

determines the number of particles whose world
lines intersect an element of hypersurface oriented
along the time axis while their momenta lie in the
region dp around the point p;.

We can write expression (11) in the explicit
relativistically-invariant form proposed by Stra-
tonovich:

Nopi= 3 5(q,— 4 (s9) 8 (p, — pfh (s)) dst0.

1<ISN

Taking into account that ds = dt/y and performing
an integration in this expression, we get Eq. (11).

The equation of motion for the functions Nqipi
has the following form in the variables qj, Pj

(0G / 0P.) ON g,/ 39, — (0G / 3q,) ON o,p,/ OP; = 0,

and in the variables qj, pj

ut% Ngyp; + % Funtir a—g‘- Ny, = 0. (12)
Together with the equations
0F ./ 0qr = 4ne S ;N g,0,d%p,
OF ./ 0q,+ 0Fwi/0q, + 0F1;/ 0g, =0 (13)

(12) forms a closed set of equations for the random
function Nq D and the tensor Fjkx whose compo-
nents are also considered to be random functions.

Using the set (9) and (10) [or (12) and (13)] we
can obtain a chain of equations for the moments of
the random functions or for the corresponding dis-
tribution functions. This problem has been con-
sidered before!? for a non-relativistic plasma.
There we obtained expressions for the space-time
correlation functions of the charge and current
density, and for the values of the vector and scalar
potentials. Using (9) and (10) we can obtain simi-
lar results for a relativistic plasma.

We shall consider a more general approach,
which enables us to take directly into account the
thermal motion of the electromagnetic field. We
determine the state of the system by giving the
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coordinates and momenta of the particles q,...,qyN.
Pi,..-.PN and the coordinates and momenta of the
oscﬂlators of the transverse electromagnetic field
Q) and PJ (j=1,2).

The equations of motion for these quantities
can be written in the following form in the Coulomb
gauge!’

. . P . . ,
q(l) = v, p(l) — _m Z q)(lq(l) _q(l)')
ISISy
e 0A e .
— -3 T = Ivxeurl A; (14)
o - P
PP = —aiQV +eVT/V 3 (Va)ika®. (15)

IKIKN

‘In those equations ak is a unit vector in the direc-

tion of the component of a vector-potential with
wave vector k. Then

A= Vircr/ VY a(Qf sinkq + QPcoskq), @ (q) =e?/q.
k
The connection between the velocity and the momen-
tum of a particle is of the form v = yp/m,.
Together with the random functions Ngp(t) we
introduce another random function defined in such
a way that the expression

N Q¥>P§{)dQ£’>dp,&f> (or more briefly, N g, p,dQ{’dP{")

is the number of oscillators of the transverse elec-
tromagnetic field with wave vector k whose coor-
dinates and momenta lie at the time t in the re-
gion dQy J)dP(J) around the point Qf{j)Pl(cJ).

We can wr1te down the equations for the random
functions introduced in this way, using the equations
of motion (14) and (15)

% oN, ) S

t+___

, . ,ON
aq (1q—q'|) Noprdq'dp a—pqp

NN
+ 2§ (=9 + vxcurl A}) Noyp, daldPP S22 = o;
(16)

o sy _9
NQkPk+ }_,(P — Noyp, — 03Qx WNQkPk)

7}
+ e/ 5 L (vausin ke Nawd'dp' 557 Noye, = 0.
an

We must take into account in the first equation that

= V]V 5 Q%5 ka
k,j
One can use the set of relativistic equations (16)
and (17) to obtain a chain of equations both for
single-time and for many-time distribution functions.
We shall take into consideration the connection
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between the distribution functions and the moments

of the random functions

Nop () Ngy (1) = VN (N — 1) f2(q, p, @', P, 1)
+(N/V)d(@—q)3(p—p)fi(q,p, ),

Nap (1) Nop (1) Ngvpr (1)
=V3N(N —1)(N—2)fs(q,p, q", P, 4", p", 1)
+VENWN —=1){3(q—q)8(p—p)(q, p.q",p", ?)
+8(q@—q)3(p—p") f2(a, P, 4", 0", 1)
+38(a"—q) (P —p)f:(a, P, 4", P, 1)}
+(N/V)i(q—q)s(p—p)

qQ)8(p—p")fi(a,p, 1),

Ngp (1) Ngrpr () Noyp, (1)
=VEN(N—-1)P3(q,p, Q' P Q» P> 1)

+(N/V)d(q—q)d(p—p) P2(q, P, Qs Py, £)-

In these equations f,, f,, and f3 are the first, sec-
ond, and third distribution functions of the electrons,
normalized in such a way that V™S [fsdqdp = 1, and
®, and ¢; are the second and third compound dis-
tribution functions for the electrons and the oscil-
lators of the electromagnetic field. Using the ex-
pressions that follow from (16) and (17) we get,
after averaging, the following equations for the

first distribution functions for the electrons and

for the oscillators fi(q, p, t), Fi(QY ), P‘J) t)

X6 (q—

61 61
VIl —n 2D (1q— a3 fdg'dp

e/
4'_7\\ + [vx curl A]/\

J . . . .
X 2Dy (q, p, QP PV, AQPAPY =0, (18)
ah Q)
>_J ( Q(/) — 0iQk p(l))
Xf‘l-—}-enl/i R(v dk)zl(?s kq’ ——(Ihdq’dp’:O. (19)

The single-time second distribution functions f,
and ¢, for which we can obtain equations by simi-
lar means, enter into these equations, only the
single-time third distribution functions enter in
the equations for the second distribution functions,
and so on.

The initial set (16) and (17) can be written in
relativistically invariant form if we use instead
of the equation for Ngp(t) the equation for the
function Ng;p; and the corresponding relativistic-
ally invariant equation for the function that deter-
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mines the number of field oscillators.

The chain of equations deduced here can be ob-
tained from the equation for the distribution func-
tion for the coordinates and momenta of all par-
ticles and field oscillators at one and the same
time

[(Qu--- QP

The equation for this distribution function is of the
following form

sQus Proc s Pyoeve PP, ... 1)

of . .
at 3 vt X {4 (,)ZCD(I q© —q@))
ISISN 1<ISN
+ %(_ oA L [vmxcurlA]\}a s
pir _9f o ~(j) _Of
+ ZI( 1 aQ(l)_('oka apl((i))
NS VRN (vay) ¥ kq -2 =0 (20)
Vv A k) cos 14 apf(i) .

k.l

3. A VARIATIONAL PRINCIPLE FOR A RELA-
TIVISTIC PLASMA

It is well known that the action function for a
system of charged particles and the electromag-
netic field can be written, for instance, in the
form!4

S= 3 {— Mo X ) = uPRdst + %S A,~u§.’>ds<l>}

ISISN
+ 1bﬂc&F"d4q

Using the function Nqipi and taking into account
that ds = dt/y and dgq, = icdt we can write this
expression in the form

1 ST
S = Tc—g{— moc |/ — ui + %—A,-u,»} N, dqd'p
+ 15 | Fhida. @1)

Using the latter expression we determine the
equations of motion in the following way

a i3S 4
Pi = aui Bqu’)[ p[ 'C’Az')
3 0 3 e 0
P, = ‘E m = ?(ﬁ[(/]ilti).

Taking into account that
d/],'/ ds = 111;044[ /,a(]k,
0 (Agur) [ 0q, = w0 A; [ 0q, + Faur,

we get the equations of motion in the usual form
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modu;/ds = (e/c) Fieuy.

The equations for the field are obtained as usual
by varying the vector potential and are the same
as (13), while the equation for the function Nqipi
itself, which follows from the equations of motion
is the same as (12).

We shall average expression (21) for the action
function over the whole system; such an average
will be denoted by a superior bar. This average
value of the action function is determined not only
by the average values Ng.p., Aj, Fik, butalso
by the values of the correlation functions of the
field and particle variables and of the field fluctua-
tions. We shall introduce the deviations from the
average values GNqipi and 6Fjk. We have then

A—i/v;lip‘- = Zi—ﬁq‘-pi -+ aAiSNq[p[’ 7:‘[2k = T?k -+ B_Fzzk

If we neglect the correlation functions 6Aj6Ng;p;
and the field fluctuations, the expression for S
takes the form
5=1 S (— meV —ut + - Ziu[>ﬁq[p[d4qd4p

c
+ T(;Fc_ S Fi dig.

This relation can be used to derive the relativistic
equations for the particle distribution function
Nqipi and the components of the tensor Fji with
a self-consistent field (without taking correlation
into aceount).

If we introduce instead of the function Nqipi
the random function qu(t), the average value of
which is the normal distribution function of seven
variables q, p, and t, we are led to the following
expression for S after integrating over the energy

S = g{— myc? 4 —i- Auu; } N gpd3qd®pds -+ 16#58 FZd4g.

In the non-relativistic approximation this expres-
sion takes the form

s = B+ S Av— ep} Nopd*qd*pdt

+ o { €2 — 1) @rqat,

v==L.
m

If we average the last expression, neglecting cor-
relation and field fluctuations, we get an approxi-
mate expression for the average value of the action
function

S = S{%v_? + = Av— e?o} N 4,d3qd?padt

T 8%8 (E* — H2) d%qdt.
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This equation is the same as the expression for the
action function used in Low’s work.!®

4. RELATIVISTIC EQUATIONS WITH A SELF-
CONSISTENT FIELD

In the present section we consider the relativ-
istic transport equation in the self-consistent field
approximation.

We first consider the set (9) and (10). We intro-
duce functions that characterize the deviations of
the random functions from their average values
6qu, 6E, and 6H, and express the second mo-
ments of the random functions in terms of the
central moments; for instance,

qu = Eﬁqp + 8E8Ngp.

If we break off the chain of equations right at the
beginning by neglecting the second central moments
we obtain a set of relativistic self-consistent equa-
tions

oN, oN, 1 __\ON

ap ap — .
'a_t+v aq +E(E+T[VXH]) a;p "__01 p = mguY;
curl H = —i—Z—tE + 4rregv—1\7qu3p, divH = 0;
curl E= — 17‘2—'; , divE = 4re {S [_\/qu3p—n0} . (22)

This set of equations differs only by the relativ-
istic dependence of the momentum on the velocity
from the classical set of self-consistent field
equations for a plasma, first considered by Vlasov.

We give here expressions for the dispersion re-
lations for transverse and longitudinal plasma
waves obtained under the assumption that the dis-
tribution function N, (t) =nf(q, p, t) differs
little from the stationary uniform distribution for
which we must take in this case the relativistic
Maxwell distribution

Np = Aexp{—cV mc*+ p*/«T).

16

The relativistic dispersion relations have the
following form

4ne?w (Tuy)zl—vp
= XT (0— ) S o— U,k

1 d3p

for transverse oscillations and

1 P d3p

o —yuk

bre? ('rux)W
= e 8

for longitudinal oscillations. The last expression
is the same as the dispersion relation given by
Clemmow and Willson.*

The set of self-consistent equations for the dis-
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tribution function Nqipi has the following form

ugaN.,Ipi/aq‘ + F,k uka pr‘. = 0

0Fu/0q, = 41:e& uiNg,p,4%p,

OF ./ 0q; + OF 1/ 0q; + 0F 1; / 0qr = 0.

The relativistically invariant dispersion relations
had been obtained earlier.2

By averaging (16) and (17) or by using the first
equations of the chain for the distribution functions
[Egs. (18) and (19)] we can obtain a more general
set of self-consistent equations for the distribution
functions of the electrons and the field oscillators,
taking the thermal motion of the electromagnetic
field into account. This set of equations has the
following form:

af‘ +v ‘a—fL—n——SCD(M—q |) fdq'dp’ 5 af‘

+_e_

c

S(—aT + [vxcurlAj )

X Fy QPP aqiParP S = o,

0F1 (/) 5F1 2 () OF1
+2( S — 0k Qk 5@)
4 ’ ) 4.0 OF
+en )/ G vao i karhdaay 2 —o.

In forthcoming parts of the present paper we
shall consider more accurate transport equations
and equations for the correlation functions.

I use this opportunity to express my deep grati-
tude to Academician N. N. Bogolyubov for a discus-
sion of the problems touched upon in the present
paper.

IN. N. Bogolyubov, [IpoGaeMbl auHaMuueckoi
TEOpuM B CTAaTHCTHYECKOH dusuke, (Problems of
Dynamic Theory in Statistical Physics),
Gostekhizdat, 1946.
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