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A connection is established between the definitions of the probability of a state and the dis­
tribution functions given in the papers of various authors, based on the example of a trans­
port equation for a charged particle in an external electromagnetic field. 

A random function which determines the number of particles in a volume element in 
phase space is introduced. The electromagnetic field strengths or the numbers of oscil­
lators are also considered as random functions. The set of equations for these functions 
serves as the basis for deriving a chain of equations connecting the moments of the random 
functions or the corresponding distribution functions of different orders. Through an ap­
proximation to this chain of equations we obtain a set of relativistic self-consistent equa­
tions. We give relativistic expressions for the dispersion equations for the transverse and 
longitudinal plasma waves. A variational principle for a relativistic plasma is considered. 

THE possibility of a consistent derivation of the 
relativistic transport equations for a plasma is of 
interest in connection with the increasing impor­
tance of the theory of the high-temperature plasma. 

The most general method to obtain approximate 
transport equations in the non-relativistic approx­
imation is Bogolyubov's method1 which is based 
upon an approximate solution of a chain of equations 
for distribution functions. 

One must also construct a chain of relativistic 
equations for distribution functions to derive the 
transport equations in the relativistic case. Dif­
ferent forms of approximating higher distribution 
junctions in terms of lower ones in such a chain 
makes it possible to obtain the appropriate trans­
port equations: the equation with a self -consistent 
field, the Fokker-Planck equation for a relativistic 
plasma, the transport equation taking radiation into 
account, and so on. The present paper is also de­
voted to this probl~m. 

The number of papers in which the relativistic 
transport equations for a plasma have been con­
sidered is very small. 2- 4 

In the papers by the author2 an equation was ob­
tained for the distribution function of a system of 
charged particles in an electromagnetic field. A 
relativistic dispersion relation for the transverse 
and longitudinal waves was found in the self-con­
sistent approximation for the distribution function 
of eight variables. We found relativistic equations 
for the quantum distribution functions for scalar 
charged particles and for electrons. A relativistic 
quantum equation with a self-consistent field was 

considered for scalar charged particles. The nor­
malization condition for the distribution function, 
given in reference 2, may be replaced by a simpler 
one in those cases when the rest mass of the sys­
tem of particles under consideration remains con­
stant. 

Belyaev and Budker3 considered, for particles 
with a Coulomb interaction, a relativistic transport 
equation which was a generalization of the well­
known Landau transport equation. On the basis of 
that equation they considered the energy and mo­
mentum transfer problem from one gas to another. 

In Clemmow's and Willson's papers4 a relativis­
tic transport equation was obtained for the basic dis­
tribution function of seven variables F (t, q, p), 
without taking collisions into account. A relativ­
istic dispersion equation for longitudinal plasma 
oscillations was found and studied. 

Since equations for different distribution func­
tions are used in the papers mentioned, we first 
establish a connection between the equations and 
distribution functions used in the various papers 
by using as a simple example the transport equa­
tion for the distribution function of the variables 
of one charged particle. 

1. RELATIVISTIC DISTRIBUTION FUNCTIONS 

When a charged particle moves in an electro­
magnetic field the square of the four-momentum 

G = ~ ! P - _::_ A)' 2 = - m 2c2 • 
...:::..J \ t c t u 

i 

is an integral of motion. Here Pi and Ai are 
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the four-momentum and four-potential. Using 
this expression for G we obtain the relativistic 
equation of motion for a charged particle:2 

d!J; = _1_ dG = _'!__( p. _ _e_ k) = u· 
ds 2m ap. Ill \ t c t " 0 t 0 . 

ds = dt VI- ~2. 

We introduce a distribution function of eight 
variables f ( qi, Pi ), defined in such a way that 
the four vector 

(1) 

is the same as the particle-current four vector. 3 

We can then, in the case of a constant rest mass, 
write down for the distribution function the equa­
tion of continuity in ( qi, Pi) space: 2 

(2) 

If we integrate (2) over the spatial coordinates and 
over all momentum components we get 

_!}_ C dq• fd3 d4 = ~~ (E -e'Pl fd3 d4P = 0 
aq1 J ds q p at .\ llloC2 q ' 

and we can therefore consider the expression 

(3) 

as the probability that the particle finds itself at 
time t in the spatial volume element d3q around 
the point q and has values of its four-momentum 
in the region d4P around the point Pi; it is nor­
malized to unity. 

We can write (3) in a more symmetric form if 
we introduce the four-vector of the hypersurface 
element dSi. We can then write instead of (3) the 
more general expression f I (ui /c) dSi I d4P which 
determines the probability that the world line of 
the particle intersects the hypersurface element 
dSi and that the four-momentum has a value in 
the region d4P around Pi. Such a definition was 
given in a paper by Stratonovich. * Choosing dif­
ferent orientations of the hypersurface element 
we can obtain instead of (3) other particular 
definitions. 

The equations given above are the same as the 
ones given by Belyaev and Budker3 with the only 
difference that in reference 3 the function JC 

*I express my thanks toR. L. Stratonovich for acquainting 
me with his unpublished work. 

= - ..fG was used instead of the function G. 
It is possible to define the probability for a 

state by expression (3) because Eqs. (2) are writ­
ten for the case where the distribution function 
does not depend explicitly on a parameter charac­
terizing the trajectory of the motion of the particle 
in four-dimension space (world line). One can 
choose the proper time as such a parameter. This 
problem will be considered in the following in more 
detail in connection with the quantum generalization 
of the results stated. 

It is in many cases convenient to use instead of 
a distribution function for the variables ~ and Pi 
a distribution function for the variables qi and Pi 
= Pi - ( e/ c ) A i. The equations of motion take in 
that case the usual form 

dq) ds = ll; = P;l m0 , dpJ ds = (cj c) Fil,llk· 

We shall write down the corresponding equation of 
continuity in these variables. Its three -dimensional 
form is 

0 at at a { 1 } at 0 moc2 at+ u aq + e Cip rE + c [ux H] f + e (uE) NJ = . (4) 

Here 

i£= L'-ecp, u =pI mo. 

In these variables we get instead of (3) the expres­
sion f ( 0/m0c 2 ) d3qd~. 

Because the mass of the particle is constant, the 
relation ~PI = - m~c2 exists between the compo­
nents of the four-momentum Pi· This makes it 
possible to simplify (2) and (4) by integrating, for 
example, over p4 and reducing them to the equa­
tion for the distribution function of seven variables 
F (t, q, p ). To do this we first clarify the meaning 
of this distribution function. 

Any element of the pseudo-sphere ~PI = - m~c2 

is p~rpendicular to the vector Pi. If we denote the 
vector of the hypersurface element in qi -space by 
dSi andin pi-spaceby ds{P>, wehave dS~P>llpi. 
The probability that the world line passes through 
a hypersurface element dSi while the values of 
pi lie within the hypersurface region dsfP> will 
therefore be proportional to the scalar product 
dSidSfP>. If the vector of the hypersurface element 
dSi is in the direction of the time axis, we get for 
the probability for a state the expression 
F ( q, p, t) d3qd3p, where F ( q, p, t) is an invari­
ant function of seven variables. Such a definition 
of probability was used by Clemmow and Willson4 

and in earlier papers (see Synge's book5 ). We 
shall find a connection between the functions 
f ( qi, Pi ) and F ( q, p, t) and obtain an equation 
for F (q; p, t), starting from Eq. (4). 
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Taking it into account that only states lying on 
the surface ~pf = - m~c2 are possible, we intro­
duce a function F ( qi, Pi ) such that 

f (q1, P) ($/m0c2)d3qd4p 

= F (q1, pz)o ((£- cV m~c2 + p2 ) d~qd3pd(£. 

From the expressions given it follows that 

F (q, p, t) = ~ F (q1, p) o (<£- c V m~c2 + p2) d&. (5) 

As a result we obtain the following equation 

oF oF { 1 } oF 7H + v oq + e E + c [vxH] (Jp = 0. (6) 

This equation is the same as the one given in the 
papers by Clemmow and Willson.4 If we go over 
from the variables q, p, t to the variables q, v, 
t, we get for the probability of finding the particle 
in a volume element of phase space the expression5* 

F (t, q, v) mg15d3qd3v. 

Using the distribution function F (t, q, p) we ob­
tain expressions for the density and the current 
from the formulae 

p = e ~ F (q, p, t) d3p, j=e~vF(q,p,t)d3p. (7) 

We must note that in the general case the equa­
tion for one distribution function is insufficient to 
describe relativistic processes. Indeed, when in­
troducing the function F ( qi, Pi ) , one must take 
into account the possibility of states with negative 
energy values, i.e., put 

f (qi, P) = F (qi, P) T {o(&- c v' m~C2 + P2) 

+ o (<£ + c V"m~c2 + P2)}-

We get in that case instead of one Eq. (6) a set 
of equations for two functions F+ and F- : 

of± oF± { ' } oF± +-+ v- +e E -L-[vxH] - = 0. --- at oq • c op (8) 

The positive sign corresponds to a positive energy 
value and the minus sign to a negative one. The 
equations for F+ and F- differ only by the sign 
in front of the first term. We shall consider (8) 
in more detail in the following in connection with 
the derivation of transport equations that take pair 
production into account. 

*A relativistic transport equation with a self-consistent 
field for the function F(q, v, t) was also considered in A. A. 
Vlasov's book TeoplUI MHOrHX '!aCTHll (Many-Particle Theory), 
Gostekhizdat, 1950. 

2. A CHAIN OF EQUATIONS FOR THE RELA­
TIVISTIC DISTRIBUTION FUNCTIONS 

There are two possible ways of obtaining chains 
of equations for the relativistic distribution func­
tions. One is a direct generalization of Bogolyubov's 
well-known method to the relativistic case. To do 
this we must consider distribution functions both 
of the particle variables and of the coordinates 
and the momenta of the field oscillators. Some 
non-relativistic problems with such distribution 
functions were considered in references 6-8. 

We shall obtain the chain of equations by a 
slightly different method, based upon the use of 
a set of equations for the random function Nqp(t) 
and the electrical and magnetic field strengths, 
which are also considered as random functions. 
The function Nqp(t) is defined in such a way 
that the expression 

Nqpd3qd3p = ~ o(q-qUl)o(p-pUl) (9) 
I<;l<;N 

determines the number of particles at time t in 
a volume element of phase space d3qd1> around 
the point q, p. Equations for the random functions 
Nqp for systems of particles with a central force 
interaction were considered, for instance, in ref­
erences 9 -11. A set of equations for the function 
Nqp and the vector and scalar potential served in 
a paper by the author12 as the starting point for 
considering the space-time correlation functions 
for a system of charged particles with an electro­
magnetic interaction. We shall use the results of 
that paper to a large extent in this section. 

If we can forget about states with a negative 
energy, the equation for the function Nqp ( t) is 
formally the same as (6): 

iJNqp -1- v aNql' + e 1E + __!._ [vxH]l oN'!l = 0. 
or aq 1 c J ap (9') 

In order that the set of equations be complete, we 
must still add the equations for the electromagnetic 
field 

curl H = + ~~ + 4:rc ~ vNqpd"p, div H = 0, 

curl E = -~a;, divE = 4:re {S Nq_,d"p- n0). (10) 

The set (9) and (10) is also a closed set of relativ­
istic equations for the random functions Nqp, E, 
and H, which describe different states of the 
plasma electrons and the electric and magnetic 
field strengths. In the following we assume that 
the role of the positively charged ions is reduced 
to the role of a background which compensates the 
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charge of the electrons. One can consider the more 
general case in a similar manner. 

If we take states with a negative energy into ac­
count we must introduce two random functions 
Nijp(t ), the equations for which are formally the 
same as (8). In a corresponding fashion the ex­
pressions for the density and the current on the 
right-hand sides of (10) are also changed. 

As an initial set of equations we can use the 
equation for the random function of eight variables 
qi, Pi• defining it in such a way that the expression 

Nq,., P;ld3qd~p = ~ in 0 (q- qU>) 0 (p,.- p~l)) id3qd4p 
I<I<N'Y 

(11) 

determines the number of particles whose world 
lines intersect an element of hypersurface oriented 
along the time axis while their momenta lie in the 
region d4p around the point Pi. 

We can write expression (11) in the explicit 
relativistically-invariant form proposed by Stra­
tonovich: 

Nq1p1 = 2J o (q,.- q~t> (sU>)) o (P,.- p~Z> (sU>)) dsU>. 
I<l<N 

Taking into account that ds = dt/y and performing 
an integration in this expression, we get Eq. (11). 

The equation of motion for the functions Nq· p. 
1 1 

has the following form in the variables qi> Pi 

(aG I aP,.) aN q1P1 I aq1 - (aG I aq1) aN q1P1 I aP, = 0, 

and in the variables qi, Pi 
a e a 

u,.a-Nq·p· +-F",uk a-Nq,p· = o. q1 ' t c P; • t 

Together ·with the equations 

aF;h I aqh = 4rre ~ u,N Q;P;d4p, 

aFn, I aq1 + aF~tz I aq,. + aFul aq" = 0 

(12) 

(13) 

(12) forms a closed set of equations for the random 
function NqiPi and the tensor Fik whose compo­
nents are also considered to be random functions. 

Using the set (9) and (10) [or (12) and (13)] we 
can obtain a chain of equations for the moments of 
the random functions or for the corresponding dis­
tribution functions. This problem has been con­
sidered before12 for a non-relativistic plasma. 
There we obtained expressions for the space-time 
correlation functions of the charge and current 
density, and for the values of the vector and scalar 
potentials. Using (9) and (10) we can obtain simi­
lar results for a relativistic plasma. 

We shall consider a more general approach, 
which enables us to take directly into account the 
thermal motion of the electromagnetic field. We 
determine the state of the system by giving the 

coordinates and momenta of the particles q1 , ... ,qN, 
p1 , ... ,pN and the coordinates and momenta of the 
oscillators of the transverse electromagnetic field 
Q~> and p~> (j = 1, 2 ). 

The equations of motion for these quantities 
can be written in the following form in the Coulomb 
gauge13 

qcn = vU>, P(l) =-a~~> ~ cf> ( i qU>- qU'> I) 
q I<I<N 

e aA e -eFt-+ c;[vx curl AI; 

Q~) = p~>. 

(14) 

p~> = - w~Q~> + e Y 4rr 1 V LJ (vak):~:kqU). (15) 
I<l<N 

1In those equations ak is a unit vector in the direc­
tion of the component of a vector -potential with 
wave vector k. Then 

A= V 4rrc2 IV~ ak(Qk1> sin kq + Qk2>cos kq), cf> (q) = e2 I q. 
k 

The connection between the velocity and the momen­
tum of a particle is of the form v = yp/m0• 

Together with the random functions Nqp ( t) we 
introduce another random function defined in such 
a way that the expression 

N QU> p<ndQ~>dpV> (or more briefly, N QkPkdQ~>dpV>) 
k k 

is the number of oscillators of the transverse elec­
tromagnetic field with wave vector k whose coor­
dinates and momenta lie at the time t in the re­
gion dQu>dpu> around the point Qu>pu>. 

We can write down the equations for the random 
functions introduced in this way, using the equations 
of motion (14) and (15) 

aNqp aNqp a\ , ,aNqp 
(it + v aq - aq ~ cf> ( I q - q, I) N q•p•dq dp ap 

+ f ~ (- ~~ + [vxcurl AI) NQkPkdQ~>dp~> a~;P = 0; 

(16) 

We must take into account in the first equation that 

A Jl 2 V '\' Qu)sin k = 4rrc I ~ k cos q. 
il,j 

One can use the set of relativistic equations (16) 
and (17) to obtain a chain of equations both for 
single-time and for many-time distribution functions. 

We shall take into consideration the connection 
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between the distribution functions and the moments 
of the random functions 

Nqp(t)Nq·~·(t) = v-W(N -l)f2 (q, p, q', p', t) 

+ (N IV) o (q- q') o (p -- p') f 1 (q, p, t), 

Nqp (t) Nq'p' (t) Nq"p" (t) 

=v-aN (N -I) (N- 2)f3 (q, p, q', p', q", p", t) 

+ v-2 N (N- I ){o (q- q') o (p- p') f2 (q, p, q", p", t) 

+ o (q- q") o(p- p") f2(q, p, q', p', t) 

+ o(q'- q") o (p' -p") f2(q, p, q', p', t)} 

+ (N IV) o (q- q') o (p- p') 

xo(q-q")o(p-p")fi(q, p, t), 

Nqp (f) N q'p' (t) N QkPk (t) 

= v-w (N- I) <P3 (q, p, q', p', Qk, Pk, t) 

-f-(N/V)o(q-q')o(p-p')ci>2(q,p, Qk, Pk, t). 

In these equations f1, f2, and f3 are the first, sec­
ond, and third distribution functions of the electrons, 
normalized in such a way that v-s f fsdqdp = 1, and 
<1> 2 and <1> 3 are the second and third compound dis­
tribution functions for the electrons and the oscil­
lators of the electromagnetic field. Using the ex­
pressions that follow from (16) and (17) we get, 
after averaging, the following equations for the 
first distribution functions for the electrons and 
for the oscillators ft<q, p, t), F1 (Q~>, p~>, t) 

ar, + af, a \' p (/ ') a f d 'i ' a! v a(j - n aq .\ c q - q I aj) 2 q ( P 

e • ( aA 
-l- -\1 --+ [vx curl A]\ · c . \ at ) 

X~ c)), (q p QUJ pen t)dQU!dpli! == 0 ap :.. , , k , k , k k , (18) 

~F, -l- '\1 ( pU! _a __ r./Q(i) _a_) 
at , LJ k aQu> k k aru> 

1 k k • 

(19) 

The single-time second distribution functions f2 

and <1> 2 for which we can obtain equations by simi­
lar means, enter into these equations, only the 
single-time third distribution functions enter in 
the equations for the second distribution functions, 
and so on. 

The initial set (16) and (17) can be written in 
relativistically invariant form if we use instead 
of the equation for Nqp(t) the equation for the 
function NqiPi and the corresponding relativistic­
ally invariant equation for the function that deter-

mines the number of field oscillators. 
The chain of equations deduced here can be ob­

tained from the equation for the distribution func­
tion for the coordinates and momenta of all par­
ticles and field oscillators at one and the same 
time 

(') (') f (qh ... 'qN, Pt. ... ' PN' ... 'Qd .... ' Pd' ... ' t). 

The equation for this distribution function is of the 
following form 

?.1_ + '\1 yUJ ...fl_ + '\-, {- ..E1._ '\l cp (/ qU! _ q(l'>/) at LJ a (I) ..::.J a (I)LJ 
I<l<;N q J<I<N q I' 

+ ~ (- aA + [vU>xcurlAll} ..EL 
c at J ap<'> 

'\1 (' p<i) ~ _ w2Q(i) ~) + LJ k aQu> k k apU! 
kJ k k 

+ e-. / i~ ')1 (vU>a ) sin k (I)~= 0. v v LJ k cos q ap(I) 
hj,[ k 

(20) 

3. A VARIATIONAL PRINCIPLE FOR A RELA­
TIVISTIC PLASMA 

It is well known that the action function for a 
system of charged particles and the electromag­
netic field can be written, for instance, in the 
form14 

S = LJ {- m0c ~ V- u)'!2 ds<'> + f ~ A1u2'ldsU!} 
I<;I<;N 

i \ p2 d4 + 1Gnc J ik q. 

Using the function NqiPi and taking into account 
that ds = dt/y and dq4 = icdt we can write this 
expression in the form 

(21) 

Using the latter expression we determine the 
equations of motion in the following way 

Taking into account that 

we get the equations of motion in the usual form 
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The equations for the field are obtained as usual 
by varying the vector potential and are the same 
as (13), while the equation for the function NqiPi 
itself, which follows ftom the equations of motion 
is the same as (12). 

We shall average expression (21) for the action 
function over the whole system; such an average 
will be denoted by a superior bar. This average 
value of the action function is determined not only 
by the average values NqiPi' Ai, Fik• but also 
by the values of the correlation functions of the 
field and particle variables and of the field fluctua­
tions. We shall introduce the deviations from the 
average values 6NqiPi and 6Fik· We have then 

If we neglect the correlation functions 6Ai6Nq·p· 
- l l 

and the field fluctuations, the expression for S 
takes the form 

This relation can be used to derive the relativistic 
equations for the particle distribution function 
NqiPi and the components of the tensor Fik with 
a self-consistent field (without taking correlation 
into account ) . 

If we introduce instead of the function NqiPi 
the random function Nqp(t), the average value of 
which is the normal distribution function of seven 
variables q, p, and t, we are led to the following 
expression for S after integrating over the energy 

S = ~ {- m0c2 + ~- A1u1 } N qpd3qd3 pds + 16~c ~ F~kd4q. 

In the non-relativistic approximation this expres­
sion takes the form 

\ {mv2 e } S = j 2 + 7 Av- e1f> N qpd3qd3pdt 

v=L. 
m 

If we average the last expression, neglecting cor­
relation and field fluctuations, we get an approxi­
mate expression for the average value of the action 
function 

S = ~ t;" + + Av- eq;} N q;>d3qd3pdt 

This equation is the same as the expression for the 
action function used in Low's work.15 

4. RELATIVISTIC EQUATIONS WITH A SELF­
CONSISTENT FIELD 

In the present section we consider the relativ­
istic transport equation in the self-consistent field 
approximation. 

We first consider the set (9) and (10). We intro­
duce functions that characterize the deviations of 
the random functions from their average values 
6Nqp, oE, and oH, and express the second mo­
ments of the random functions in terms of the 
central moments; for instance, 

ENqp = E Nqp + oEoNqp· 

If we break off the chain of equations right at the 
beginning by neglecting the second central moments 
we obtain a set of relativistic self-consistent equa­
tions 

iJN afli (- 1 -\a ill 
~+v~+e E+-[vxH] ~=0 

i)t i)q c ) i)p ' 

- 1 iJE ~ -curl H = -dl + 4rre v Nqpd,p, 
c • 

div H = 0; 

- 1 iJH 
curl E =- (;(f[, 

This set of equations differs only by the relativ­
istic dependence of the momentum on the velocity 
from the classical set of self-consistent field 
equations for a plasma, first considered by Vlasov .16 

We give here expressions for the dispersion re­
lations for transverse and longitudinal plasma 
waves obtained under the assumption that the dis­
tribution function Nqp(t) = nft(q, p, t) differs 
little from the stationary uniform distribution for 
which we must take in this case the relativistic 
Maxwell distribution 

Np =A exp {- cV m~c2 + p2 /xT}. 

The relativistic dispersion relations have the 
following form 

for transverse oscillations and 

for longitudinal oscillations. The last expression 
is the same as the dispersion relation given by 
Clemmow and Willson.4 

The set of self-consistent equations for the dis-
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tribution function NqiPi has the following form 

- e a-
u;aN QjPil aq, + c F;k Uk ap, Nq;P; = 0, 

af',k I aqk = 41te ~ u,JJ Q;P;d4p, 

aF,k;aq, + aFkt ;aq, + aFu ;aqk = o. 

The relativistically invariant dispersion relations 
had been obtained earlier.2 

By averaging (16) and (17) or by using the first 
equations of the chain for the distribution functions 
[Eqs. (18) and (19)] we can obtain a more general 
set of self-consistent equations for the distribution 
functions of the electrons and the field oscillators, 
taking the thermal motion of the electromagnetic 
field into account. This set of equations has the 
following form: 

oft + v ~ -n ~\'<I> (I q- q' I) f dq'dp' at~ m ~ ~J 1 ~ 

++ ~(-~~+[vxcurlAJ) 
X F (QU> p<nt) dQU> dPU> at1 - 0 

1 kk k kap-' 

aF1 + "\, ( p<i) aF1 _ CJ} Q(f) ~lj_) 
at ~ k aQu> k k ap<i> 

j k k 

V 41t ~ ( 1 ) Sin k 'f d 'd 1 iJf1 0 + en -v v ak q 1 q p -<-.> = . 
cos ap~ 

In forthcoming parts of the present paper we 
shall consider more accurate transport equations 
and equations for the correlation functions. 

I use this opportunity to express my deep grati­
tude to Academician N. N. Bogolyubov for a discus­
sion of the problems touched upon in the present 
paper. 
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