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Dispersion relations for physical amplitudes have been derived by the Bogolyubov method 
in the center-of-mass system for electron bremsstrahlung and for pair production by a 
photon in the field of a nucleon, accurate to lowest order in e. 

1. INTRODUCTION 

AT the present time dispersion relations (d. r. ) 
provide one of the most effective methods for taking 
into account effects of strong interactions. In ap
plication to electromagnetic processes such as the 
nucleon Compton effect, bremsstrahlung, or pair 
production by photons in the field of a nucleon, etc., 
this method, under well defined assumptions, al
lows information to be obtained about the nucleon 
structure. It should be noted that nucleon structure 
has been the subject of considerable attention in 
recent years* since it has not only intrinsic inter
est but is also closely related to the study of limits 
of applicability of quantum electrodynamics at 
small distances. 

A theoretically rigorous study of the influence 
of nucleon structure on the processes of brems
strahlung and pair production is made possible by 
applying d.r. to the indicated processes. From 
this point of view a study of d.r. for the virtual 
Compton effect, which describes both of the above 
mentioned processes, is of certain interest. 

In this work d.r. are obtained for the virtual 
Compton effect accurate to lowest order in e by 
the Bogolyubov1 method. 

The proof of d.r. for the bremsstrahlung and 
pair production processes was given by Vladimirov 
and Logunov;3 in this paper attention is concen
trated on obtaining d.r. in a form useful for prac
tical applications. 

It is shown that the cross sections agree, in the 
one-nucleon approximation, with those calculated 
by lowest order perturbation theory; however, the 
d.r. method allows one to introduce rigorously 
form factors (of the type considered by Hofstadter) 

*A detailed bibliography on the nucleon structure problem 
may be found in the review article by Blokhintsev, Barashen
kov, and Barbashov! 
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into those nucleon vertices in the Feynmann graphs 
which contain a virtual photon line. This consti
tutes one of the serious advantages of the d.r. 
method over perturbation theory. 

The resultant d.r. may be further utilized at 
least to estimate the contribution of the one-pion 
state to the processes under consideration in the 
same way as was done for the pion photoproduction 
process.4•5 

The bremsstrahlung and pair production proc
esses have been previously calculated by the au
thors6 in lowest-order perturbation theory, taking 
into account only Bethe-Heitler type diagrams into 
which Hofstadter form factors were introduced. It 
is clear that for incident particle energies up to 
~ 150 Mev, when the contribution from the meson 
cloud of the nucleon and higher order electromag
netic corrections are unimportant, these results 
could be used to check the validity of quantum elec
trodynamics at small distances, i.e., to verify the 
local nature of the interaction between the electro
magnetic field and the current of a charged par
ticle. Analogous results were also obtained by 
Bjorken et al. 7 However as the energy increases 
to 500 or 600 Mev the contribution from the meson 
cloud of the nucleon should become more and more 
noticeable and the one-pion approximation may in
troduce significant changes in the cross sections 
for the processes under discussion. Therefore 
taking into account the one-pion state will notice
ably move the energy limit for the check of valid
ity of quantum electrodynamics at small distances, 
namely up to an electron and photon energy of the 
order of 500 - 600 Mev. 

In this way it becomes possible, for example, 
to verify quantum electrodynamics down to dis
tances ::::: 3 x 10-14 em in the bremsstrahlung 
process where the incident electron has an en
ergy ~ 550 Mev and the emitted photon has an 
energy ~ 260 Mev. 
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2. DISPERSION RELATIONS FOR THE AMPLI
TUDE OF THE VIRTUAL COMPTON EFFECT 

The S -matrix element describing the brems
strahlung of an electron in the field of a nucleon 
has the form 

(f IS I i) = (p, s; q, cr; fl, vIS I qo, cr 0 ; p0 , S0) = 

= (2rr)'1' (p, s W (q, cr) a- {k, v) Sb+* {q0 , cr 0 ) I p 0 , S0), (2.1) 

where p, s (p0, s 0 ) are the four-momentum and 
spin of the final (initial) nucleon, q, u ( q 0, u0 ) 

are the four-momentum and spin of the final (ini
tial) electron, k, v are the four-momentum and 
polarization of the photon, b- ( q, u) and b + * ( q0, u0 ) 

are creation and annihilation operators for an elec
tron in the states (q, u) and (q0, u0·), and 
a- (k, v) is the creation operator for a photon of 
momentum k and polarization v; I p 0, s 0> 
= (27r) 312 c+*(p0, s 0 ) <I> 0 is the initial nucleon state 
vector. 

Now following the method outlined in the paper 
by Logunov and Isaev8 and assuming that the vir
tual Compton effect amplitude behaves asymptotic
ally as ~ 1/k0 (where k0 is the photon energy)* 
we obtain d.r. for the diagram shown in Fig. 1, 
in the Breit coordinate system and to lowest order 
in e, as follows 

C0 f I CX) I I D (/<o) = ~ \ A ,(!<0 ) dk0 _ ~ \A __ <--c,-k-=-0 )_d_k;;:_0 

" i:, ko- ko "' i;, "o + ko 

p 

+ ~p. p) <-)-a+ ~p. pI r (0) I Po· cro), 

A(2) (Aa + ~p) = (2rr)3 ~.~ ~~· en81S ~ (p, cr I r (0) I )-a 
p 

+ ~p, p) ()-a+ ~p, PI/ (0) I Po• cro); 

)-a= k + (1- ~) p = x- (1 + ~) p, 

~ = m~ I 4p2· x2 = - tn2. 
y ' Y' 

Here a= 71./A. is a unit vector orthogonal to p; 
j l ( 0 ) , jn ( 0 ) are the electromagnetic current 
operators; en is the polarization vector of the 
free photon; u (q, u) is the spinor describing an 
electron in the state with momentum q and spin 
direction u. The spinors are normalized accord
ing to uu = 1. 

The d.r. for pair production by a photon in the 
field of a nucleon are obtained from (2.2) by the 
simple substitutions k - K, K = q + q0, and m~ 
= Kij - K2 • The one-nucleon terms (2.3) are evalu
ated at the points 

flo=± Ep = ±(1- ~) p2 IV M 2 + p2 • (2.4) 

The continuous spectrum in k0 begins at the points 

flo= =f £1 = [=f2M:J. 

(2.5) 

with J..t the pion mass. 
In order to avoid having the one-nucleon poles 

± Ep fall in the region of the continuous spectrum 
I ko I ~ E1, i.e., in order that Ep < E1, it is nec
essary to require that p2 satisfy 

p2 < (2Mp. + [J.2 + m~.) 14 . . 

It is important to note that in the d.r. under study 
no unphysical region appears for momenta satisfy
ing the inequality 

(2.2) 1 Pi< [(2M:t + fL 2)2 + (M + fL) 2m~ + m~M2 + (2MfL + fL2) 

where 

flo = (/<0 + x0) I 2, x = q0 - q, 

D(flo) = ~ [STret (k0 , a)+ STadv(fl0 , a)], 

A (ko) = L l ST'et (k0, a)- ST"dv (1< 0 , a)], 

with S the 71. -symmetrization operator. 

*An analogous choice for the asymptotic behavior of the 
amplitude for the real Compton effect was made by Gell-Mann 
and Mathews! 

X V (2MfL + [L2 + 11!~) 2 + 4M2m~]'1,f2V2 (M + p.). 

(2.6) 

For the real Compton effect my = 0 and we get 

in agreement with the results of Bogolyubov and 
Shirkov. 10 The one-nucleon terms (2.3) are calcu
lated in the same manner as that outlined by 
Logunov and Isaev. 8 In the Breit coordinate system 
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they take the form 

A(1)- e2 M (M" + ~p") w ( cr) (F (xz) t 
In-- 2(21t)0 (M 2 -/-p2)£" VEEo p, 1 "( 

A l ) + p 2 (x2) vo r~;.;r I (rl' + M) 

X ( F 1 (1~2) In- F 2 (/~z) l'>o l:;.;rnl ) w (po, cro)' 

A (2) 2 M (M2 -/- ~P2) - ( ) (F (k2) n 
nl = - e 2 (27t)" (M" + p") E" lfEEo W p, cr 1 "( 

_ p 2 (kZ) Vo ~:~Tnl) (p" +~ M) 

x(Fr(x2)11 + F~ (x2) Vo !fA/l ) w (p0 , cr0). (2. 7) 

Here F 1 and F 2 are nucleon form factors: F 1 ( 0 ) 
= F2(0) = 1 for the proton, Ft(O) = 0, F 2(0) = 1 
for the neutron; f.J.o is the anomalous magnetic mo
ment in units of nuclear magnetons. 

It is important to note that in the one-nucleon 
approximation, i.e., when 

(2.8) 

( E, E 0 are the electron energies in final and initial 
states) the expression (2.8) coincides with the sum 
of th'e matrix elements corresponding to the dia
grams of Figs. 2a and 2b, in which the vertices in
volving the virtual photon contain F 1 ( K2 ) and 
F 2 ( K2 ) instead of the form -factor functions 
<P 1(K 2, p"2 ) and <I> 2(K 2, p" 2 ), and the vertices in
volving the real photon contain F 1 ( 0 ) and F 2 ( 0 ) 
instead of <.Pt( 0, p"2 ) and <1> 2 ( 0, p"2 ). 
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In this way use of d.r. permits one to introduce 
in a rigorous manner into the bremsstrahlung and 
pair production processes (in lowest order in e 
approximation) the form factors depending on one 
variable which, for negative values of the argument, 
were studied by Hofstadter. 11 

3. STRUCTURE OF THE BREMSSTRAHLUNG 
AMPLITUDE 

Making use of the results of Kawaguchi and 
Mugibayashi12 we write Tc in the form 

12 

Tc = ~ O,T1, (3.1) 
i=l 

where Qi are scalar functions of the invariants 
constructed of p 0, p, k, and K, and Ti are rela
tivistic and gauge invariant structures satisfying 
the condition 

(p~ Po, cr ~ o0 , k-> -k, ><->- x). (3.2) 

The resultant twelve structures are rather un
wieldy (they are given explicitly in reference 13 ). 

In going over to the real Compton effect four of 
these structures vanish and only eight remain. 
This is in agreement with the results of Ritus .14 

We expand Tc in the frame p +Po= 0 in 
terms of twelve independent three-dimensional 
structures rk, which we choose as follows 

r, = e· E:, r 5 = i E:·Aa·pxe, 
r2 = e·p E·A, r 6 = i E·p e·p a·px>., 

r 3 = e·p E:·p, r = j_ e·p E·A a·px>. 
7 t..• ' 

r4 = i E·p a·pxe, r8 = i e·p a·px £, 

r9 = i e·Ea·px>., 
r10 =i E:·pa·)\.xe, 

r 11 =f. E·A a·>.xe, 

r 12 = i e·p a•AX E. 

(3.3) 

The amplitude Tc may now be written as 

1~ 

T" ~ 2j L,, (k0 , p2) ''" (3.4) 

where Lk(k0, p2 ) are scalar functions of the vari
able k0 and the recoil p2 • The ;\ -symmetrization 
operation S is now performed trivially due to the 
explicit dependence of the structures rk on ;\. 

4. DISPERSION RELATIONS FOR THE LORENTZ 
INVARIANT COEFFICIENTS 

As a consequence of independence of the struc
tures rk it is obvious that d.r. (2.2) may be writ
ten for each coefficient Lk separately (and each 
of these coefficients shall behave in the complex 
k0 -plane no worse than the amplitude TC, and 
decrease asymptotically no slower than 1/k0 ). 

Furthermore the symmetrization operation S 
will cause the structures antisymmetric in ;\ to 
decrease no slower than k02• 

In orde:r; to go over from d.r. for Lk to rela
tions for the coefficients Qi it is first necessary 
to relate Qi and Lk and then to investigate the 
behavior of Qi ( k0 ) in the complex plane. 

Expanding Ti in terms of the rk and utilizing 
12 12 

Tc = ~ i1;T1 = L L,,rk, 
i~1 k~J 

we find 

12 
2} il.,a,k = Lk 
i=l 

(k = I, 2, ... , 12). (4.1) 
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The system (4.1) separates and can be solved for 
Qi· 

An analysis of the coefficients Qi ( k0 ) shows 
that all Qi are analytic functions of ko in the 
same domain in wqich the function Tc is analytic. 
For the coefficient n6 we write once-subtracted 
d.r. since its asymptotic behavior may be like that 
of a constant. 

Introducing the invariant variables 

r = k (p + p0), t = (x- k) 2 (4.2) 

and utilizing the relations 

Im QI(k0) =- Im n;(- k0) (j = 1, 5, 6), 

Im.Q/(k0) = ImDj(-k0) (j = 2, 3, 4, 7, ... ,12), (4.3) 

which follow from (3.2), we obtain d.r. for the func
tions Qi ( r, t) in the frame p + Po = 0 in the fol
lowing form 

00 

Re Di(r, t) = !:._ (' (-.-1 - + , 1+ ) Im D, (r', t) dr' 
1t ) r -r r r 

r, 

+ D? (i = 1,5), 

00 

Re Qi(r, t) = ~ (' (-,-1--+--+ ) Im Q, (r', t) dr' 
1t ) r -r r r 

r, 

+D? (i=2,3,4,7-11), 

00 

R Q ( t) = 2r2 pI Im n6 (r'' t) dr' + R Q' (0) 
e 6 r, 7t J r' (r'2- r2) e " ' 

r, 

t + m~ 1 
Re D6 (0) =--.- Re D 5 (0) + 2 Re D1 (0), 

2m:;. my 
00 

Re D12 (r, t) = ~ (' (-,-!--~+ ) Im D12 (r', t) dr' 
1t J r -r r r 

r, 

(4.4) 

[the lower limit on the integrals is r 0 = 2MJ..! + 1-12 

+! (t + m~)]. The one-nucleon terms in the d.r. 
for n6 and n12 vanish. The remaining one
nucleon terms may be obtained from (2. 7) and are 
given explicitly in reference 13. 

5. DISPERSION RELATIONS FOR PHYSICAL 
AMPLITUDES IN THE BARYCENTRIC FRAME 

In order to obtain d.r. for the physical ampli
tudes in the barycentric frame we expand Tc in 
terms of independent three-dimensional structures 
Pk in that frame: 

u 

yc = l} M,}'k· (5.1) 
k=l 

Here Mk are physical amplitudes which depend 
on the total center of mass energy W and on 
cos e' where e is the angle between the direc
tions of the virtual and real photons. We have 

p, = e•e, 
p2 = e·K e·k, 
p, = e·K e·K, 

p4 = i e•K U•KXe, 

p5 = i e.k U•KXe, 

p6 = i €:-K e•K U•kXK, 

p7 = i e·K e·k a·kxK,. 

Po = i e·K U·Kx e, 

P9 = i e·ea·kXK, 
p,o = i e·K a· k x e , 

P11 = i e.k a·kxe, 
p12 = i e·K a·kx E:. 

(5.2) 

The relation between Qi ( W, cos e ) and 
Mk(W, cos e) may be obtained by expanding the 
relativistically invariant structures Ti in terms 
of Pk= 

12 

T' = ~ b,"p" (i = 1,2, ... ' 12). (5.3) 
k=l 

By solving the system (5.3) we find the matrix 
II Cik II = II bik 11-1• By an appropriate choice of the 
structures, namely the choice (5.2), it is possible 
to separate the system (5.3) and reduce it to two 
second order and two fourth order systems. The 
coefficients Cik are rather complicated and will 
not be given here. The final form of the d.r. for 
the physical -amplitudes Mj in the barycentric 
frame is as follows: 

00 

ReMJ(W, t, m~)=~P \ ~~'(w·z~w• 
M+" t 

+'YJ'w·z 1 
2 )xW'dW'bi,(~V,t,m~) + W2 - 2M2 + my + t Y 

x~ c,k(W', t, m~) Im M" (W', t, m~)+ ~bit (U~', t, m~)D? 
k i 

(J I I+ Ill~ ") X 1 M2 -~,t,m; 

I+ m~ (Vr 0 I+ m~ 
---C-! M----

2m" "' 2 ' 
y 

where 

~r. = r I r', ~; = I fori =!= 6; r' = W'2 - M2 + + (t + m~); 
YJ;=l fori=l,5; 'YJ;=-1 fori=2,3,4,6-12. 

(5.4) 

In conclusion we express deep gratitude to A. A. 
Logunov for valuable discussions and constant in
terest in this work, and also to D. V. Shirkov and 
A. N. Tavkhelidze for useful advice. 
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