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€ 3/ 2 V, and the distance R between them by .fE R. 
On the other hand, the energy of interaction of 

small particles in vacuum is given directly by the 
formulas of London or Casimir-Polder (at dis­
tances which are respectively smaller or larger 
than the characteristic wavelengths A.0 in the 
spectrum), because only the smallness of the 
dimensions of the interacting systems is used in 
the derivation of these equations. We shall find it 
convenient to rewrite these equations in the follow­
ing form: 3 

00 

U 0 = (3n I 7tR6 ) ~ ~2 (iO de, for R < '1-0 , 

0 

for R > '1-0, (1) 

where a ( w) is the complex polarizability of the 
particles. Considering that the polarizability of 
spherical particles of volume V with dielectric 
constant E1 is given by 

( ) 3 e,( w) - 1 V 
~ W = ~ e1 (w) + 2 ' (2) 

and performing the transformation indicated in the 
beginning of the article, we obtain a final equation 
for the interaction energy in the liquid 

00 

U = 271;V2 ( [e' (iE_ )- e (i~). ]' dC 
16 n8k 6 .\ e1 (!~) + 2e (t~) ·• for R < '~-o• 

0 

U = }!!!_ .:!:._ ~ r e, (O) - e (O) ]z for R ::;;.. 'A 
64 n 3 R' 1/e(O) e1 (0) + 2e (0) ' o· 

(3) 

We note that for the second equation in (3) to be 
applicable it is enough that the dimensions of the 
particles be small only compared with the distance 
between them (and not compared with A.0 ). 

Equations (3) can be also rewritten in a differ­
ent form, taking into account the fact that the 
change in the dielectric constant of a liquid, due 
to the presence of N particles per unit volume, 
is equal to 

os = 3NV (E1 - s) E I (s1 + 2s). 

(where NV« 1; see, for example, reference 3, 
problems of Sec. 9). 

Using (4), we rewrite (3) in the form 
00 

31i (' (ae ( i~))2 d~ 
U = 16n3 R 6 ~ ~ e2 (i~) ' 

0 

U _ 231ic (ae (O) • 2 

- 64n"R 7e'1• (0) ~) ' 
[ E ( w ) is the dielectric constant of the mixture 
and N is the number of particles per unit vol­
ume]. 

(4) 

(5) 

We note that in this form Eqs. (5) describe not 
only the interaction of macroscopic particles sus-

pended in a liquid, but also the interaction of par­
ticles with dimensions on the order of interatomic 
distances, as well as the interaction between mole­
cules of a dissolved substance in a solution. Here, 
however, the value of the quantity 8€ ( w )/ BN -
the derivative of the dielectric constant of the so­
lution with respect to the concentration - can 
naturally no longer be calculated from Eq. (4), 
but must be obtained directly from experiment. 

*We use the equations for the absolute temperature zero, 
and the .influence of the temperature on the interaction forces 
under ordinary conditions is very small. 
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THE key to the understanding of superconductivity 
lies in the Cooper phenomenon, i.e., in the fact 
that two electrons with opposite momenta and spins 
near the Fermi surface can form bound states. 
These states obviously represent bosons, which 
form a condensate at low temperatures. 

In constructing a theory of superconductivity 
it is then natural to take the Bose condens~tion 
of these bosons explicitly into account. In analogy 
to the theory of superfluidity of Bogolyubov we 
therefore introduce the boson creation and anni­
hilation operators c + ( q) and c ( q). 

The Hamiltonian which takes account of the 
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creation and the decay of the bosons is written 
in the form 

H = ~ s (k) (a+ (k) a (k) + b+(- k) b (- k)) 
k 

+ ~ w (q) c+ (q) c (q) + LJ f (q) (c+ (q) a (k) b (q- k) 
q k,q 

+ c (q) b+ (q- k) a+ (k)), (1). 

where a+(k) and a (k) (b+(k) and b (k)) are 
the Fermion operators for electrons with "right" 
("left") spin; E (k) = k2/2m; w (q) is the energy 
of the bosons; it is important that w ( 0 ) ~ 0, i.e., 
that the bosons have a non-vanishing rest energy. 

We shall further assume that the overwhelming 
majority of the bosons lies in the condensate. We 
therefore neglect all terms with q ~ 0 in the 
Hamiltonian (1). This leads to the approximate 
Hamiltonian 

H' =hE (k) (a+ (k)a (k) + b+ (- k)b (-k)) + w(O)c+(O)c(O) 
k 

+ f (0) ~ (c+ (0) a(k) b(-k) + c(O)b+ (-k)a+ (k)). (2) 
k 

As in the theory of superfluidity, we disregard 
the non -commutativity of the operators c + ( 0 ) 
and c (0 ), i.e., we regard these operators as 
numbers. Without loss of generality we may 
regard 

c+ (0) = c (0) = ~ If (0) (3) 

as a real number. In this approximation we obtain 
the model Hamiltonian 

H R= ~e(k) [a+ (k)a (k) + b+(- k) b(- k)] 
k 

+ .6. 2: [a (k) b (- k) + b+ (- k) a+ ( k)] 
k 

+ (t) (0) ~2/ f2 (0). 

It can be easily verified that the Hamiltonian H 
commutes with the operator of the total number 
of electrons: 

(4) 

N=:z;[a+(k)a(k)+b+(-k)b(-k)] + ~2c+(q)c(q). (5) 
k q 

Denoting the chemical potential by 11-. we see 
that the operator HR - 11-N can at once be diag­
onalized by the canonical transformation of 
Bogolyubov: 

a (k) = ek cos Cflk + 4 sin Cflk, 

b (- k) =- etsincpk + 'Yjk COSCflk, (6) 

where 

tan 2cpk = ~I [s (k)- p.]. 

In terms of the new coordinates ~k· 1Jk we have 

HR -r;.N = ~{[s(k)- p.] 
k 

- ~~ [s (k)- p.j2 + ~ 2 (I- etek- 'Y/t'Y/k)} 

+ (w (0)- 2r;.) ~2 1 f2 (0). (7) 

We average the operator (7) over the state with 
an energy E corresponding to the given tempera­
ture T: 

(H R- p.N)E = lJ {[s (k)- [J.] 
k 

- Vrs (k)- r.1.J2 + ~2 (I - 2n (k))} 

+ [w (0)- 2r;.J ~2 1 f2 (0), 

where 

n (k) = <etek)E = <4~k)E 

= [exp /Vrs (k)- r;.J2 + ~2 1 T} + Jr1• 

To find Ll we minimize < HR -11-N >E with 
constant n (k). We have 

(I 
at. (HR -rJ.N) 

,, t::. "V I• (kl- 1'-1" + ~..>• 
=- f VI• (k) _ f-LJ2 + t.2 tanh 2T 

(8) 

+ 2 fw (0)- 2!'-] ~ = O (9) 
[ 2 (0) ' 

which leads to the following equation for the deter­
mination of .6.: 

1 = f2 (0) ~tanh {fie (k)- !'-]2 + f:l2 j2T) _ . (1 0) 
2 [w (0) -2p.] k V [e (k) _ :-<P + f:l2 

Comparing (10) with the corresponding formula 
of the usual theory, we see that our model leads 
to superconductivity if w ( 0 ) - 211- > 0. At first 
sight it seems reasonable to set w ( 0 ) - 2!1-
~ - 2.6. < 0, since w ( 0) - 211- is just the binding 
energy of the pair. It should be noted, however, 
that the Hamiltonian (1) does not take account of 
the direct interaction of the unpaired electrons 
with one another. The amplitudes c + ( 0 ) and 
c ( 0 ) and the energy w ( 0 ) are therefore the 
renormalized amplitudes and energy of the pair. 
As our calculations show, we can neglect the four­
fermion terms in the Hamiltonian and at the same 
time renormalize the pair energy such that the 
inequality w0 - 211- > 0 is satisfied. 

We see that the quantity f2 ( 0 )/ [ w ( 0) -211-] 
= g > 0 is the same as the interaction constant 
in the Bardeen -Cooper -Schrieffer theory. 
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