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C ONSIDER a hypothetical experiment in which 
neutrons are compressed to a density such that 
the energy at the Fermi surface exceeds a few 
Mc2• In that case a partial transformation of 
neutrons into other baryons - protons and hy
perons - will be thermodynamically favored, and 
it will be necessary to consider as many independ
ent Fermi distributions as there are elementary 
particles. The problem of the number of elemen
tary particles may be approached in this way since 
if some particle is in reality not elementary it 
would not give rise to a separate Fermi distribu
tion. If, for example, the 1: + is a bound p and 
K0 complex, then at high densities it will turn out 
.that "inside" the 1: + there is a p identical to 
other free protons (the 1: + will be "crushed"). 

In the asymptotic expression for the energy of 
a relativistic Fermi gas E = AN4/3, where N is 
the total density of all baryons, the coefficient A 
is given by 

A = [3 (3;-c 2)'1• 1 4] '1-';,hc = a'l-'1., 

where v is the number of the kinds of truly ele
mentary particles and a is the coefficient for 
v = 1. Thus there exists in principle, a possibil
ity of determining v; it was assumed in the above 
that in the limit of large densities all interactions 
are small compared to the Fermi energy. 

If one were to insist on designating as different 
particles (index 1 and 2 ) that are actually made 
up of identical fermions with different surround
ing boson clouds, then the increase in the total 
energy of a system consisting of N1 particles of 
one type and N2 particles of the second type, in 
comparison with the Fermi energy of each group 
separately, will give the appearance of a repulsion 
of these particles: 

where V is the energy of the apparent interaction. 
The question arises whether the experimentally 

observed nucleon repulsion ("hard core.'' ) at small 
distances is not precisely such an "apparent" inter
action, due to the fact that all baryons contain "in
side" them one common fermion -the carrier of 

the conserved baryon charge. Such a repulsion 
may be investigated in an elementary example.* 
Let us consider the collision between a proton p 
and a mesic atom H consisting of p and 71'-. 

We may treat p and H as two different spin ~ 
particles. Then the 3S state of the system with 
parallel spins and zero orbital angular momentum 
is allowed. The wave function 1/J for the system, 
after separating out the center of mass motion and 
the spin function, may be written as 

~(R, p)=<D(R)x(R, p), R=rl-rz. 

p = r"- (r1 + rz) I 2. 

For the 3s state x should be an odd function and 
may be written approximately as 

X= B(cp(p- Rl2)-cp(p + Rl2)], 

where cp stands for the ground state function of 
the 71'- in the atom: 

cp (p- R / 2) = cp (r"- r1), cp (p + R I 2) = cp (r"- r2). 

As the protons approach each other x goes 
over into the function describing a P -state meson 
( Z1r = 1) in the field of the two protons with a pro
jection of the angular momentum onto the direction 
R equal to lR = 0. In deriving the Schrodinger 
equation for .P it is customary to add to V (r1 - r 2 ) 

= V (R) the meson energy E7r(R) calculated from 
the function x as < x*H1rX > where 

Htt =- (1i2 I 2mtt) ~P + V (! rtt- r1l) + V (! r"- r2l). 

Actually it is also necessary to consider the effect 
of the operator (-:11/2J.L)D.R on x(R, p) (J.L is 
reduced mass of the two protons ). For small R 
the contribution of this term is (due to the angular 
part of D-R) 

£1= <x* I-W/2p.)~R lx> =(h212p.)2W2. 

The Schrodinger equation for .P 

- (h2 I 2{-t) 6R<D + [V (R) + £" (R) + t•2/ p.R2] <D = E<D, 

insures the vanishing for R = 0 of a spherically 
symmetric function .P only if the term E1 is in
eluded. Such a result is self-explanatory: two 
protons with parallel spins must at small distances 
be in a statet L = 1 and E1 is the centrifugal 
potential. However E1 appears as the effective 
potential in the equation for the function .P de
scribing the spherically symmetric ( S) state. 

In the study of the scattering of p on H after 
elimination of the 3s component the contribution 
fo E1 will manifest itself as a strong repulsion 
at small distances. In contrast to the usual term 
E7r the expression for E1 does not depend on the 
properties (mass, charge) of the meson. 
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The appearance of E1 is entirely due to the 
fact that the "interiors" of the two different par
ticles p and H are identical. If the meson cloud 
surrounding the proton in the H atom is in a state 
with Zrr = 1 then a repulsion will appear not only 
in the 3s but also in the 1S state. The average 
value of the coefficient of fhe term n2/2t.tR2 should 
be of the order of unity. 

In the study of two identical particles (e.g., two 
atoms H) with meson clouds having Zrr = 1 there 
also appears a repulsion in the 1S state. However 
the average Fermi energy in this case remains un
changed; that is, the repulsion in the 1S state is 
compensated for by an attraction in the 3P state 
(reduced centrifugal potential in that state). 

Let us return from models to baryons. The 
hypothesis of one common "core" leads to the 
conclusion that in the interaction of different or 
identical baryons in S states there should appear 
a strong repulsion at small distances with a poten
tial "' n2/2p.R2. The present-day data1 on the p-p 
and p-n interactions at small distances are in 
agreement with this estimate. No such repulsion 
should be observed in the interaction of any bary
ons with any antibaryons. 

In the interaction of identical particles the 
short range interaction, averaged appropriately 
over the various angular momentum states, van
ishes. The study of short range forces between 
different particles in various spin and angular 
momentum states could replace the "gedanken" 
experiment on the determination of the number v 
of elementary particles from the density depend
ence of the energy considered at the beginning of 
this note, and would make it possible to establish 
whether or not the different pairs of particles 
under study have a common "interior." 

I take this opportunity to express my gratitude 
to A. D. Sakharov; a discussion with him on the 
state of matter in superdense stars served as the 
origin of this work. 

*This example was discussed by S. S. Gershte'ln in connec
tion with the theory of hydrogen mesic molecules. 

tThe total orbital angular momentum of the system equals 
zero, however the meson also carries one unit of angular mo
mentum. 

1 P. s. Signell and R. E. Marshak, Phys. Rev. 
109, 1229 (1958). 

Translated by A. M. Bincer 
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RECENTLY Zel'dovich1 called attention to the 
possibility of a direct transition of a t.t+l.t- pair 
through a virtual photon into an electron-positron 
pair. It is of interest to study this process in 
more detail, in particular using not only the non
relativistic approximation employed by Zel'dovich. 

The matrix element describing this process 
can be obtained directly from the exchange part 
of the matrix element for Bhabha scattering (see, 
e.g., reference 2, formula 49,49) by replacing the 
initial state electron and positron wave functions 
in it by l.t -meson wave functions. Keeping this 
remark in mind it is easy to write down the ex
pression for the probability of the transition 
1-t+l.t-- e+e-. In the center-of-mass system, 
neglecting the rest masses of the electron and 
positron in comparison to their energies, we 
obtain 

dw = (e4dQ; 8ch2L3K:) s+s, 

where the spin part of the matrix element is 

S = b~+ocvb!J.b/ocvbe. 

(1) 

(2) 

Here av is a four-vector composed of Dirac 
matrices and the b's are the spinor amplitudes 
of the wave functions of the corresponding par
ticles. Further calculations dealing with the spin 
states of the particles are considerably simplified 
if use is made of a table given in the monograph 
by Sokolov2 (formulas 21,17 and 21,18). Applying 
these formulas to Eq. (1) and summing over the 
electron and positron spins we find 

• e4dD. ( • k: k51J.) ( 1 ' 2 6) dw (s s ) = I - siJ.siJ. - + - - siJ.sll- cos . 
11-• 11- 8cn2 L3K! K! K! (3) 

Here nk is the momentum of the particle, cnK 
= en .j k2 + k~ is its energy, s is the projection 
of the particle's spin onto its direction of motion, 
and e is the angle between the meson and electron 
momenta. In Eq. (3) sl.tsM can take on the. values 
± 1 where the value -1 corresponds to the ortho-' 
state of 1-t+l.t- with total spin parallel or antipar-


