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THE motion of a rarefied gas or of a gas with a 
large flow gradient, cannot, generally speaking, 
be treated as the motion of a continuous medium, 
and additional consequences of kinetic theory must 
be used. 

As is known, Grad1 considered such a flow by 
adding to the independent parameters (in addition 
to the mean velocity, density, and temperature) 
also the heat flow and the tensor of viscous 
stresses. Using a specific form of nonrelativistic 
Maxwellian distribution (which can be considered 
as a weighting function for three-dimensional 
Hermite polynomials in velocity space), Grad 
expanded the distribution function in Hermite 
polynomials. Retaining only the first three terms 
of the series, he obtained a distribution function 
over the coordinates and velocities, describing 
the processes of viscosity and heat conduction in 
the nonrelativistic approximation. 

It is easy to obtain a distribution function for 
rarefied relativistic gas, with allowance for the 
phenomena of viscosity and heat conduction, by 
introducing orthogonal polynomials with a weight 
exp (- uvfl+U2). Here u = mc2 /kT, where T 
is the temperature in the proper reference sys
tern of the given gas element; u2 = uh, where 
ua are the spatial components of the four-veloc
ity of the gas particles.* By way of an example 
we cite the first two polynomials of this type 

Here Kv ( u) is the MacDonald function. 
As is known, 2 the scalar distribution can be 

written in the form 

F = icf (x, p) o (H +me). 

Here H is the invariant Hamiltonian function, 
while x and p are the 4-coordinates and 4-
momentum of the particle. The scalar f (x, p) 
coincides with the ordinary distribution function 
and its expression in the proper coordinate sys
tem of the gas in equilibrium differs from 
exp (- u.fl+il2) only by a multiplicative factor. 
If we now expand f [ exp ( - u v'1+1l2)] - 1/2 in 
terms of the functions ( exp (- uv'T+U2 ) ]1/2 g~> 
(the expansion is valid in the sense of converg
ence in the mean) and confine ourselves to the 
first three terms of the expansion, we obtain 
after simple calculations an expression for 
f (x, p) in the proper system of reference of 
the given element of gas 

(1) 

(2) 

f( ) ( V-1 --2 ) { na a2T11~~~~~t3 
X, P =exp -a + u 4n (mc) 3 K2 (cr) + 8mn4c5 Ks (cr) 

(3) 

Here n is the density of the particles in a proper 
system of the given element of gas, Ta(3 is the 
additional term in the three-dimensional portion 
of the energy-momentum tensor due to the dissi
pative processes, and T a{3y are the spatial com
ponents of the tensor TikZ = f PiPkFzd4p. 

The expression for TikZ in any system of ref
erence can be obtained from its components in the 
proper system of reference. As a result we ob
tain 

mcK4(a) (U U U ) R + Ks (cr) i'tkt + k 'til+ t'tik + ikl, (4) 

where Ui is the 4-velocity corresponding to the 
average motion, and RikZ is a tensor, whose com
ponents Ra(34 and R44, vanish in the proper sys
tern and whose remaining components coincide with 
the components of TikZ in the same system. The 
tensor TikZ can be used in the study of transport 
phenomena, and also to investigate the structure 
of a shock wave. We note that for large values of 
u, Eqs. (3) and (4) go into the corresponding non
relativistic expressions. 

Inasmuch as the function f is a scalar, its 
form for any system of reference should be 
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{ na a2-r:ik ~; ~k 
f (x, P) = exp (p; q,) 4n (mc)3 K2 (a) + Bn m• c• Ks (a) 

a't. [ (mc)2 !K2 (a)- Ks (a) Ks (a)] 

+ 24nm•c6K,(a) Rtkl + IKi (a)- K4 (a) K2 (a)] 

X (v;UkUt + vkulul + 'Vf U;Uk) J 
x · [ e,eket- ~: i:~ (e,Bkt + ekllu + e,ll,k) ]} , 

where the qi have the same meaning as in refer
ence 2, and Vi is an additional term in the vector 
of material flow density, due to the dissipative 
process. 

Inasmuch as Tii[ = -m2c 2 (cnUz + vz), the 
parameters that determine the state of the gas 
are n, T, Ui, Tik· and RikZ· Using Eq. (3) 
and the requirement that the mean energy be 
expressed only in terms of the Maxwellian por
tion of the distribution function, it is easy to show 
that Tii = 0. 

In conclusion, I consider it my pleasant duty to 
thank Prof. V. L. German for interest in the work 
and for valuable advice, and to G. I. Budker and 
S. I. Braginski1 for very valuable discussions. 

*The Greek indices run through three values, and the Latin 
ones through four; repeated indices imply summation. 

1 H. Grad, Commun. on Pure and Appl. Math. 
2, 331 (1949). 

2 S. T. Belyaev and G. I. Budker, Dokl. Akad. 
Nauk SSSR 107, 807 (1956), Soviet Phys.-Doklady 
1, 218 (1956). 
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IT is known that a free electron placed in crossed 
electric and magnetic fields drifts in the direction 
perpendicular to the electric and magnetic fields. 
The drift velocity, i.e., the mean velocity of the 

electron's motion* (apart from a part dependent 
on its initial velocity), is equal to v = cH-2 (Ex H], 
where E and H are the intensities of the electric 
and magnetic fields. In addition, the electron exe
cutes an oscillatory motion along the electric field, 
at a frequency eH/mc; that is, the frequency in 
crossed fields does not depend on the electric 
field. 1 

The situation is different for an electron in a 
metal or semiconductor. The complicated disper
sion law has a pronounced effect on the character 
of the motion of a conduction electron. We shall 
start from the classical equation of motion, the 
Lorentz generalized equation, 

dp/dt = e {E + c-1 [vxH]}, v = as;ap. (1) 

It is easy to show that the integrals of the motion 
in this case are 

s* (p) = s (p)- v0p = canst, 

v0 = cH-2 [Ex H], Pz =canst. (2) 

The z axis is taken along the magnetic field; v0 

coincides with the mean velocity of the electron's 
motion, i.e., with the drift velocity, only in case 
the trajectory of the electron in momentum space, 
as determined by Eq. (2), is closed. In fact, on 
introducing the velocity v0 in Eq. (1) we get 

dp;dt = (e/c) [v- v 0 }x H. 

From this it is clear that v = v0 if dp/dt = 0. 
This happens in the case of closed trajectories. 2 

Equation (3) shows that the motion in crossed 
fields of a particle with the dispersion law E 

= E (p) can be treated as motion in a magnetic 
field alone of a particle with the dispersion lawt 

s* (p) = E (p)- VoP·. 

(3) 

(4) 

Therefore the results obtained before are easily 
transferred to this case. In particular, the period 
T* of revolution of an electron around a closed 
orbit is2•3 

T* = - (c!eH) oS* ;as•. (5) 

Here S* is the area bounded by the curve deter
mined by Eq. (2); it depends, naturally, on the elec
tric field. It is interesting to note that this de
pendence disappears in the case of a quadratic 
dispersion law: the presence of the term -VoP 
in the Eq. (2) merely perturbs the trajectory 
without changing its area. Thus the dependence 
of the period of revolution on the electric field is 
an effect specific to an electron with a complicated 
(non-quadratic) dispersion law. It should be no
ticed that cases are possible in which a conduction 


