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The energy lost by a particle that passes through a layer of matter of finite thickness is 
computed. It is found that at high energies the particle losses due to passage through the 
interface between two media (transition radiation) can become important. 

THE energy lost by a particle (per unit path 
length) is usually computed under the assumption 
that the particle moves in an unbounded uniform 
medium (cf., for example, reference 1). In the 
present paper we calculate the energy lost by a 
particle in traversing a layer of finite thickness. 
As has been shown by Ginzburg and Frank, 2 when 
a charged particle passes from one medium into 
another a readjustment must take place in the 
field associated with the particle; as a result part 
of the field is "shaken off." This effect is the so
called transition radiation. It is of interest to 
consider the total energy lost by a particle in 
passing through the boundary separating two 
media. 

Before solving this problem for finite slabs 
we consider the case in which the particle moves 
from one semi-infinite medium into another. The 
particle losses are computed by the method de
veloped by Landau (cf. reference 1). The fields 
produced by the charged particle in cases of this 
kind have been given earlier.3•4 

1. CASE OF A SINGLE BOUNDARY DIVIDING 
TWO MEDIA 

Suppose that the particle moves along the z 
axis with velocity v and goes from one medium 
into another [with dielectric permittivities E1 ( w) 
and E2 ( w) respectively]; the plane z = 0 is 
taken as the plane of separation between these 
media. The fields in both half-spaces will con
sist of two parts: one is the same as the field 
associated with a charge which moves in an in
finite uniform medium while the other is the ra
diation field. We write the expressions for the 
Fourier components of the longitudinal (in the 
direction of motion of the particle ) radiation 
fields in the first and second media: 

(1) 
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Here, in contrast with the expressions given ear
lier3 the real and imaginary parts of A.1 and A.2 

are taken as positive (A.L2 = w2E1, 2 /c 2 - K2 ). 

As in all problems of this type we assume that 
the energy lost by the particle is small compared 
with the kinetic energy so that the velocity remains 
constant. 

To calculate effects due to interactions over 
distances much larger than interatomic distances 
(in which case a macroscopic analysis can be 
used) it is sufficient to compute the work done 
on the particle by its field. The work done by 
the first part of the field is similar to that com
puted in reference 1. We compute the work asso
ciated with the fields given by Eqs. (1) and (2). 
In this case it is more pertinent to consider the 
total work done in each medium rather than the 
work done per unit length of path. 

First we calculate the work done by the Fourier 
field component in Eq. (2): 

00 

F2 = ev ~ dt ~ E~n (k) ei (l.,v-w) I dk = ::. (f~1)- f~2)), (3) 

where 

f~I) = \ ~Y. __ (1 + v/,1 I w) (t.2v + w) dw 
- J e2!.1 + e1/,2 (k2 - w2e2 I c2 ) (k2 - w2e1 j c2 ) ' 

(4) 

p( 2) = \ x 3 dx (e1 I e2 + v/. 1 I w) (t..v + w) d 
2 ~e2 !. 1 + e1!.2 (k2 - m2<2 I c2 ) 2 w. (5) 

From these expressions it is apparent that by com
puting the integral 

(6) 

and then letting E1 I E2 ---. 1 (in the places denoted 
by the square brackets) and E3 ___. E1, we can ob
tain F~0 ; then, by taking the limiting case E3 ___. 
E2, we obtain F~2 >. In Eqs. (4)- (6) the integration 
over K is carried out from zero to some value K0, 
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corresponding to the minimum distance from the 
particle trajectory at which the macroscopic anal
ysis is still valid. 

First we carry out the integration over w from 
- oo to + oo • For this purpose we close the path of 
integration by a half-circle in the upper half of the 
plane. Since the integral along this half-circle 
vanishes the expression being sought will be equal 
to the sum of the residues in the upper half of the 
plane. The residues are taken at the zeros of the 
functions (k2 -w2E2/c2 ) and (k2 -w2E3 /c2 ). In 
the upper half of the plane these functions have 
one zero, at the imaginary axis (cf. reference 1). * 
Then, we integrate with respect to w ( K ) instead 
of K (cf. reference 1). For an ultrarelativistic 
particle the limits of integration are 

} 1 a2,3 I (I - ~2) and c Y (x~ + a2,3 I c2) I (I - ~2), 

a2,3 = 4rtN2.ae2 I m 
( N is the number of electrons per unit volume and 
m is the mass of the electron). Thus, we have in 
the ultrarelativistic case 

2 { 2 a'!, a'/• } J = __ nc_ cx0 _ _ 2 - a + ~ (a + a ) • (7) 
V 1 - ~a 2 3 aa- as 8x0c 2 3 

Whence it is not difficult to obtain the values of 
F~1 > and F~2 >; finally, from Eq. (3) we have 

2e' { 2 a~' - a'f' 3 } F2 = yo;-- - -(a2- al) • 
c y 1 - ~a 3 aa- a1 Bxoc 

(8) 

It is apparent from this formula that reasonable 
accuracy can be obtained if we take Ko == oo, i.e., 
the effect is macroscopic and vanishes at small 
distances. We may note that F2 > 0 when u2 > O"t 

and F2 < 0 when u2 < O"t· 
By a similar calculation we can show that in r 

contrast with F2, F1, the work of the radiation 
field on the particle in the first medium, falls off 
with increasing particle energy; we shall not con
sider it further. 

Our analysis is not complete until w.e take ac
count of the fact that a particle with the same ve
locity will have different energies in different 
media; this might be called macroscopic "renor
malization" of the particle mass. We compute 
the amount of electromagnetic energy which the 
particle carries through a plane perpendicular 
to its trajectory for motion in an unbounded uni
form medium: 

*In a similar manner it can be shown that ,\1 and ~ do not 
have zeros in the upper half of the plane. Furthermore, since 
E, and e 2 do not have zeros in the upper half of the plane and 
are positive along the real axis it is easy to show that the 
sum e2,\1 + e,~ has no zeros in the upper half of the plane. 

co 

W = :"' ~ [ExH]zdxdydt 
-oo 

e2 \ x3 dx dro 
= nv ~ e: (ro) (k2 - ro2e: (ro) 1 c2 ) (k2 - w2e (- ro) 1 c•) • (9) 

The integration over K is taken from 0 to Ko so 
that the numerical expression gives the flux through 
the entire plane except for a circle of radius 1/ Ko 

whose center coincides with the particle trajectory. 
Assuming for simplicity that E (- w) == E ( w ), we 
compute the following integral (the zeros in the 
denominator are traversed from above): 

By taking E' == E in the final result we obtain an 
expression for W. Thus, 

w = e2 {l<oC _ v;} 
c Y1- ~· z , 

(10) 

where u == 47rNe2/m. 
It can be shown that the field at distances up 

to 1/Ko is the same in all media. Thus, if a par
ticle has an energy p,c2 -./ 1- [32 in the first medium, 
a particle of the same velocity will have in the 
second medium an energy 

fL'C2/~, 

where fL' = fL + (W2 - W1)/c2 = fL + e2 (~- ~)/c2 . 

Returning to our problem, we now take account 
of the force F2 which also acts on the particle; 
the energy of the particle is 

It is easy to show that the quantity in the square 
brackets is always positive, i.e., in passing through 
the boundary between the two media the particle 
always loses an amount of energy given by 

(11) 

For vacuum-medium and medium-vacuum cases 
this energy loss is ( e2/3c)-./ u/ ( 1- [32) . 

We now show that the indicated energy losses 
are completely due to the transition radiation.* 
We compute the electromagnetic radiation flux 
through some plane perpendicular to the z axis 
(in the second medium) for the entire particle 
time of flight: 

+oo 
s2Z = :"' ~ [E2 X H2]z dt dx dy. (12) 

-00 

*Attention has been directed to this fact by K. A. Barsukov 
in a similar calculation for a waveguide. 
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We use the formulas for E2 and H2 which have 
been derived in reference 3, and make use of the 
6 -function in the integration over t, x, and y. 
Then, converting from integration over K to w, 
as in the preceding cases, we find that this flux 
consists of three parts: one is due to the field of 
the charged particle itself and is given by Eq. (10) 
(with a = a2); the second is the radiation field 
(given by I); the third is due to interference be
tween these fields and vanishes when ( w/v - A.2) z 
»1. 

We now find the angular distribution and fre
quency dependence of the transition radiation field 
in the second medium. To find the conditions 
under which the interference term vanishes (i.e., 
the transition radiation zone), after integrating 
over t, x, and y in Eq. (12) we make the sub
stitution K = ( w/ c) IE; sin e, where e is the 
angle between the wave vector of the radiation 
field and the z axis. Assuming for simplicity 
that E2 = 1 and Et = E, we find the energy flux 
in the second medium due to transition radiation 

, 2e2 ~2 sins 6 cos2 6 d6 dS.. = -- .,..,,.---~----;c-= 
- 'ltC (1- ~2 cos2 6)2 

00 I( (e-1)(1-~·-~Jfe-sin•6 )• 
X J (ecos6+fe-sin2 6)(1-~Ve-sin2 6) dw 

0 

(13) 

(we assume that the medium is transparent).* It 
is apparent from this formula that the radiation 
vanishes at small angles (8 ~ ~) with re
spect to the direction of motion of the particle. 
Taking account of this fact, it is easy to show that 
the main contribution in the integral in Eq. (13) is 
at frequencies larger than the optical frequencies 
[because of the small factor ( 1- (3-./ E- sin2 e) 
which appears in the denominator of Eq. (13)]. 
Then, substituting the expression E ( w) = 
1- a/ w2 in Eq. (13) and replacing sin e by e, 
we integrate first over the frequencies, and then 
over the angles from 0 to oo. We find S2z = 

e2/U/3c~. 
As to the frequency distribution of the transi

tion radiation spectrum, we find from Eq. (13) 
that the radiation intensity is almost constant 
from optical frequencies to the limiting frequency 
Wlim = /U/2~. At this frequency the radi-

*We may note that this formula coincides with Eq. (28) of 
reference 3, bearing in mind that the significance of the angle 
e in both formulas is the same for transition radiation, but not 
for Cerenkov radiation. The infinity which appears in Eq. (13) 
when 1 - f3V E - sin2 () = 0 is due to the fact that this formula 
also gives the intensity of the Cerenkov radiation emitted with 
a semi-infinite trajectory in the first medium, which is assumed 
to be transparent. The intensity of the transition radiation itself, 
however, is always finite (cf. reference 3). 

ation intensity falls off by a factor of 2 as com
pared with the intensity at lower frequencies. 
The main contribution in the integral is due to 
frequencies which are not too small compared 
with the limiting frequency. 

The transition radiation in the first medium 
can be obtained in essentially the same way. The 
well-known formula given by Ginzburg and Frank 
is used (cf. also references 3, 5, and 6); this 
formula differs from Eq. (13) in that (3 is re
placed by - (3. As a result, the small factor in 
the denominator vanishes and the backward tran
sition radiation encompasses only the optical 
part of the spectrum, being given by an expression 
which diverges logarithmically with energy. 

If we now assume that the first medium is a 
vacuum and that the second is a dielectric, Eq. (13) 
undergoes changes which are unimportant at high 
frequencies, so that the foregoing results still 
apply. 

As has been noted, the transition radiation 
zone is determined by the inequality z » 
I w/v - A.2 l-1• If the second medium is a vacuum 
the transition radiation zone is determined, for 
all frequencies, by the inequality z » ""/ ( 1 - (32) 
(~ is the wavelength of the radiation divided by 
211"). However, if the second medium is not 
vacuum, the transition radiation zone is of the 
order of the optical wavelength for optical fre
quencies so that z » ~/ ( 1 - {32 + mt2 /2c2) for 
frequencies close to the limiting frequency. At 
the limiting frequency Zlim » eN a ( 1 - (32 ) , i.e., 
the transition radiation zone grows much larger. 

Finally we consider the number of transition 
radiation photons. Again limiting ourselves to 
the medium-'-vacuum or the vacuum-medium 
case, the number of photons with frequencies 
w' ~ Wopt• up to the hardest, is given by the 
expression 

N~ = 1~7 ! [In ( !, v 2 (1 :_ ~·))--}] • (14) 

Whence it is apparent for example that if E/ Jl ~ 

1010 and w' ~ -./a /2 , N2 ~ 0.1, i.e., out of ten 
particles on the average only one emits a transi
tion photon. If the frequency of the transition 
photon is close to the limiting frequency its en
ergy is approximately "' .J a I ( 1 - (32) , i.e., 
this energy is approximately 137" times greater 
than S2z· Thus, as follows from Eq. (14), a. 
photon of this kind appears approximately once 
out of 137 particles). 

In spite of the classical nature of the effect, 
the radiation of transition photons from singly 
charged particles is a rare phenomenon, sub-
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ject to large fluctuations. This effect can be 
made classical if the number of emitted photons 
is inCJ;eased. This can be achieved, for example, 
if the particle is multiply charged or if it passes 
through a large number of boundaries. In the 
first case the number of emitted photons and the 
total energy increases quadratically with the 
charge of the particle; in the second case these 
quantities increase in proportion to the number 
of boundaries traversed. In both cases the lim
iting frequency of the photon remains the same. 
However in the second case the transition photon 
zone must be considered. 

All the results cited above refer to the vacuum
medium or medium-vacuum case. However, as is 
apparent from Eq. (11), these results apply quali
tatively for the medium-medium case, which dif
fers from the preceding cases only in certain 
small numerical factors. 

2. CASE OF A FINITE SLAB 

Suppose now that a particle which moves in 
vacuum enters a slab whose boundaries are the 
planes4 z = 0 and z = a (cf. also reference 7). 

Because the particle moves in the same medium 
(vacuum ) on both sides of the slab it is not neces
sary to "renormalize" the particle mass. 

As in the preceding case we consider the work 
done on the particle by the radiation field and ob
tain the following expressions for the region in 
front of the slab ( W 0 ), in the slab ( w t) and be
hind the slab (Wt): 

(15) 

W = -- _::_ \' ><""YJ' d>< dw (ei(Av-w)afv - I) 
1 rc .) Af (AV- w) 

><"1)" d>< dw (e-t(:>.v+o>)afv _ 1) 
Af(~<v+w) ' 

(16) 

(17) 

where 

.. = ._ _ ___ o.e~-l .. '[ E } ( e + 1 ) -- ., 
~ A - ),, -

( __:_ ~F-)-. '-le±i!.a + ~e I e±twa1v ' 1 ' ') { } 
\ ), A0 1 A o ' 

"YJ'l = _ (--=--\- ~-) oe+iAa _I_ (--=-- + __!___) 'Ve+iwajv _ 
·IJ" J , !. ·- "-o , A "-o • 

J_ 2 i. - v' (I) :t: 1 I /, T vI w 
/:"2 (!) ~ c~· 

T } = =t= 1 I 1- 0 + v I oo + ± 1 ! f- 0e - v I w 
o k2 - w2 f c2 112 - w2e 1 c2 ' 

It is easy to show that F has no zeros in the upper 
half of the complex w plane. Furthermore, in the 

expression for F only the first term need be used. 
As in the preceding case, we find that W0 falls off 
with increasing particle energy; hence this term 
will not be considered here. 

In integrating the expressions for w1 and W1 

we limit ourselves to "thick" and "thin" slabs. We 
note that w1 and W1 contain exponential terms 
with the characteristic argument i (i\.- w/v) a. 
A slab will be considered thick or thin depending 
on whether this argument is lar~e or small com
pared with unity. In the first case we neglect 
terms containing this exponential; in the second 
case we expand the exponential and limit ourselves 
to the first nonvanishing term. We then analyze 
the manner in which w and K appear in the inte
grals to determine whether a slab is to be con
sidered "thick" or "thin." 

In the case of the thick slab, w1 is given by 
an expression which coincides with F2 for the 
motion of a particle from vacuum into a medium, 
while W1 coincides with F2 for the motion of a 
particle from a medium into vacuum. Thus, from 
Eq. (8) it follows that the total loss of energy is 
- ( 2e2/3c) -../a/ ( 1- {32 ) • Obviously this loss ap
proaches the transition radiation arising at each 
boundary of the slab. This same result can be 
obtained by direct calculation of the flux of elec
tromagnetic energy which passes through a plane 
perpendicular to the z axis and located in the 
space beyond the slab.* 

Assuming that the slab is thick, substituting 
the limiting value of the frequency, and assuming 
that K ~ w ~ /c, we obtain the following re
quirement for the slab thickness: 

(18) 

If the thickness of the slab is less than the 
limiting value (18), the transition radiation spec
trum will not contain hard photons; these photons 
cannot be produced in the slab and it follows that 
they cannot be formed in the space beyond the 
slab. 

We now consider the thin slab. The following 
expressions are obtained for w1 and W1 : 

W1 -- ----z a ln :-;:: + 0 I , • _ ae2 ~ v-x0 1 l 

c - v" - _; (19) 

(20) 

*We may note that in references 4 and 8, in the calculation 
of the Poynting vector in the ultra-relativistic case, only the 
optical part of the transition radiation spectrum was investigated. 
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( Q ~ I/n, where I is the ionization energy of the 
K-electron). Adding the last two expressions to 
the usual ionization losses in matter!* the energy 
loss of a particle in a thin slab is given by the ex
pression 

2 N • [ c2x2 ] 
F = ;c2e a In li _ ~~) n 2 + 2c1 - I . (21) 

It is apparent from this formula that in thin slabs 
there is no density effect. To obtain the condi
tions under which a slab may be assumed thin we 
proceed as follows. In the expanded formulas (16) 
and (1 7) we compute the last term smaller than 
the first-order term in a. As a result the follow
ing condition is obtained for a thin slab: 

a~ 2 (c.Q I a )In (vx0 I VJ- ~2 .Q). (22) 

It is apparent from these formulas that, after first 
levelling off, the ionization losses in the slab again 
start increasing logarithmically at some particle 
energy if the slab is in a vacuum. However if the 
slab is in a medium which has a smaller electronic 
density (than the slab), the ionization losses again 
reach a plateau corresponding to the electron den
sity of the medium surrounding the slab. 

As the slab thickness is reduced, the particle 
can radiate more or less hard photons in the re
gion outside the intervals given by Eqs. (18) and 
(22), and the term without the density becomes 
important in the ionization losses. 

Dnestrovski1 and Kostomarev have considered 
the radiation formed in the flight of a charge 
through a circular aperture in an infinite ideally
conducting plane. 9 The results obtained by them 
for the case of an ultrarelativistic electron are in 

*In view of the fact that Eq. (19) (with the exception of an 
additive constant) can be reduced to the usual expression for 
ionization losses, it would appear that braking forces do not 
operate on the particle in the slab. However account must be 
taken of the fact that the total field carried by the particle is 
different in vacuum and in the slab. When this factor is con
sidered it can be shown that the braking force acts on the 
particle only in the slab. 

agreement with the present results in that the total 
radiation energy is proportional to the particle 
energy. The coefficient of proportionality obtained 
by these authors is the ratio of the classical elec
tron radius to the dimensions of the aperture and 
is several orders of magnitude smaller than the 
completely natural coefficient of proportionality 
obtained from Eq. (ll). 
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