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We have used a new theory of electromagnetic waves in a crystal1•2 to evaluate, in the ex
citon light absorption region, the amplitudes of the waves occurring in a crystal for a given 
amplitude of the wave incident from the vacuum. We have considered the case of cubic 
crystals. We show that in the frequency region where the refractive index is much less 
than unity the amplitudes of the normal and the longitudinal waves in the crystal are appre
ciably larger (by factors of the order of several hundred) than the amplitude of the inci
dent wave. The photoionization of impurities is therefore much more intensive in this 
frequency range than in the neighboring regions. This explains the frequently-observed 
sharp maximum of the external and internal photoeffects in the frequency range corre
sponding to exciton absorption. We show that there can occur in the crystal waves with 
an amplitude which increases linearly with the penetration depth into the crystal. 

ONE of the authors has shown in previous 
papers1- 4 that if a monochromatic light wave, with 
a frequency which lies within the exciton absorp
tion range, is incident upon a crystal from the 
vacuum, several light waves appear in the crys
tal, among which strictly longitudinal waves are 
also possible. In particular, four transverse waves 
and one longitudinal wave appear in cubic crystals.2 

The amplitudes of the two anomalous transverse 
waves tend rapidly to zero when the frequency of 
the light moves out of the exciton absorption range 
on the red or the violet side. The remaining two 
transverse waves then go over into the usual waves 
known in optics. As far as the longitudinal wave 
is concerned, its amplitude remains appreciable 
(of the order of the amplitude of the wave incident 
from the vacuum ) in a much wider range of fre
quencies and important changes must be introduced 
into the usual electromagnetic optics for this range. 

In the present paper, as in reference 2, were
strict our considerations only to cubic crystals 
and only to those cases where the coefficients of 
the expansion of the exciton energy in powers of 
the absolute magnitude of its wave vector do not 
depend on the direction of that vector (isotropy). 
In particular, the effective mass of the exciton will 
not depend on the direction of the wave vector. we 
emphasize that for excitons with a longitudinal and 
a transverse polarization (called henceforth longi
tudinal and transverse excitons ) these expansion 
coefficients will be different. We shall restrict 

ourselves, as was done earlier,2 to considering 
the case where the expansion of the exciton energy 
in powers of the absolute magnitude of the wave 
vector does not contain a linear term. 

The aim of the present paper is to estimate 
the amplitudes of all five waves appearing in the 
crystal in relation to the amplitude of the incident 
wave. The equations obtained will be used to deter
mine the intensity and the frequency dependence of 
the impurity photoeffect, which will be shown to 
possess a number of peculiarities in the exciton 
absorption region. 

1. AMPLITUDES OF ELECTRICAL FIELD IN
TENSITY OF WAVES PRODUCED IN A CUBIC 
CRYSTAL ILLUMINATED BY MONOCHRO
MATIC LIGHT 

The amplitudes of the transverse waves (E+, E_) 
and of the longitudinal wave (Ell) which appear in 
a crystal, and also the amplitude of the wave re
flected into the vacuum R can be expressed in 
terms of the amplitude of the wave incident from 
the vacuum A through Eqs. (23)- (29) of refer
ence 2. For the purpose of interest to us, we can 
simplify these equations in some limiting cases. 
Below we consider two such cases (we retain the 
notation of reference 2). 

A. The case where the indices of refraction of 
the transverse waves, n+ and n_, have absolute 
magnitudes appreciably larger than unity. Let the 
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subscript s denote the component of the ampli
tude of the wave in the direction perpendicular to · 
the plane of incidence, and subscript p the com
ponent in the plane of incidence. If I n± I » 1, 
Eqs. (23), (24), and (25) of reference. 2 can be re
written in the following simplified manner: 

s -components: 

E±s = u±As. 

u. = 2 cos cp!(n+- qn_), 

Rs = (u+ +u_ -l)As1 

u_ = 2 cos cp/(n_- n+/q), 

(1) 

~=-~. 00 
q . (n~- p.);(n!- p.), :..1. (2Mc2(/i.w~)(w _,_ w0). (3) 

Here cp is the angle of incidence of the light on the 
crystal, M the effective mass of the transverse 
exciton, c the velocity of light in vacuo, w0 = 
00 /ti where 00 is the energy of a transverse ex
citon with a zero wave vector, and w the light 
frequency. 

We can write down similarly Eqs. (26)- (29) 
of reference 2 in simplified form. 

p -components: 

E±p=v±AP, Rp=(v+n++v_n_-I)Ap, (4) 

v+ = 2; (n+- qn_), v_ = 2;(n_- n+;q), 

v_ = - qv+, (5) 

E 11 =- (2 sin tp/3) Ap. (6) 
We have assumed that the other absorption bands 
are sufficiently far away from the one considered 
(or have low intensities ) , and thus the refractive 
index of the normal transverse waves tends asym
ptotically to a constant value h, when the light 
frequency moves away from the exciton absorption 
region under consideration. The refractive indices 
of the transverse waves are determined in that 
case by the formulae 1 

n~ = (p. + 3)/2 ± V(p.- 3)2/4 + b, (7) 

b = 8rrMc2a/h2:u~, (8) 

where a is a constant proportional to the oscil
lator strength of the phototransition of the crystal 
in the exciton state; its exact meaning is explained 
in reference 1. 

If the oscillator strength of the transition re
ferred to an elementary cell of the crystal is of 
the order of 0.1, and if we assume that M is of 
the order of the free electron mass, b turns out 
to be of the order of several times ten thousand, 
as shown in reference 2. Correspondingly, In± I 
turns out, from Eq. (7), to be of the order of 10 or 
larger. Such a large dispersion does, however, 
not yet mean an intensive absorption. The popular 
point of view, according to which a large disper
sion is always combined with an intensive absorp
tion, is in general incorrect, as shown in refer
ences 2 and 4. 

The refractive index for the longitudinal waves 
is equal to2 

(9) 

where M' is the effective mass of a longitudinal 
exciton, w0 = 00 /ti, and <130 is the energy of a 
longitudinal exciton with zero wave vector. The 
connection between 00 and 00 is given in Eq. 
(8) of reference 3 and Eq. (35) of reference 4. 
This connection can be written in the form 

(10) 

using the notation of the present paper. If /J- is 
evaluated at the frequency w = w0 using Eq. (3), 
we get 

fL(W = <u~) = b/3. (11) 

From this it follows that w0 is just the frequency 
for which, according to Eq. (7), the refractive in
dex of one of the transverse waves (the normal 
wave) is equal to zero. At the frequency w0 the 
macroscop.ic dielectric constant of the crystal is 
equal to zero. 

We now proceed to estimate the relative mag
nitude of the amplitudes of the waves occurring in 
the crystal. In the case M > 0 the denominators 
in the expressions for v ± and u± will, according 
to (7), not have a small absolute magnitude in the 
region In± I » 1. Hence, I v± I « 1 and I u± I « 1, 
i.e., the amplitudes of both transverse waves are 
appreciably less than the amplitude of the incident 
wave. As far as the longitudinal wave is concerned 
its amplitude is, according to (6), of the order of 
magnitude of the amplitude of the incident wave for 
not too small cp. The longitudinal wave is thus in
tense and dominates over the transverse waves. 
When M < 0, the longitudinal wave is determined 
in the region In± I » 1 by the same Eq. (6), and 
has the same amplitude as in the previous case. 
u± and v ± are also small, except in the frequency 
region where n+ ~ n_, i.e., where the denominator 
of u± or v ± tends to zero. u± and v ± become 
then infinite. This anomaly deserves a special 
detailed consideration which shall be given in the 
following section. 

In Figs. 1 - 4 are shown the frequency depend
ences of I u± I. I v± I. and I E11 /Ap I in there
gion w ~ w0 evaluated by the exact formulae of 
reference 2. The following values of the param
eters were used: tiw0 = 2 ev, 3 = 2, M' = M, 
lattice constant equal to 10 Bohr radii of the hy
drogen atom, and an oscillator strength of the 
transition equal to 0.1 (referred to the elemen
tary cell of the crystal). 

B. The case w ~ w0, when the refractive in-
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FIG. 1. Frequency dependence 
curves: 1) [uti"' lvtl; 2) [u_j"' 
[v_[; 3) [E11 /Apl· M=m (m is 
the mass of a free electron), b = 

S8400, <p = S0 • 

dex of the normal transverse wave is much less 
than unity. In this frequency range we get I q I « 1, 
for M > 0 and I q I » 1 for M < 0. On the basis 
of these inequalities we can show that, according 
to Eqs. (23)- (29) of reference 2, the amplitude 
of one of the transverse waves (the anomalous 
wave) becomes negligibly small and all the prop
erties of the second transverse wave (the normal 
one) approach the properties that follow from the 
usual electromagnetic crystal optics. The refrac
tive index and the amplitude of the normal wave 
will henceforth be denoted by n and E, without 
the subscript ± . On the basis of the above
mentioned inequalities, Eqs. (23)- (29) of refer
ence 2 can be simplified and written in the follow
ing form: 

s -components: 

Es=UA., u=2![l+Vn2 -sin2 tp/COStp], (12) 

sin~= n-1 sin tp, cos~= VI - n-2 sin2 tp. (13) 

Here 1/J is the angle of refraction of the normal 
wave. 

p -components: 
Ep=vAp, v =2cosrp!!llr: __ n 2 sin2 cp+ ncoscp 

+ sin2 cp 1 n V t:1. 2n2 - sin2 cp ], 
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FIG. 3. Frequency dependence curves: 1) [uti "' lvtl; 
2) [u_["' [v_[; 3) [E11 /AP[. M = -m, b = -S8400, <p = S0 • 

The region of complex values of n2 lies between the dotted 
straight lines. 

FIG. 2. Frequency dependence 
curves: 1) [u+[; 2) [u_[; 3) lvtl; 
4) [v_[; S) [E1/Apj. M = m, b = 

S8400, <p = 4S0 • 

Here 
(16) 

To obtain the right hand side of Eqs. (16), we ex
panded nf1 and n2 in a power series in w -- w0 
and limited ourselves to the first terms of the ex
pansion, since we were considering the region 
w ~ w0. 

In Eq. (14) we can always neglect sin2 qJ com
pared to a 2n2 in -J a 2n2 -- sin2 qJ since a is a 
very large quantity; we have, for instance a 2 ~ 
b/92 in the case when M' w~ /Mw02 ~ 1. In the 
numerical example considered above, a 2 was 
of the order of several thousands. Thus, even 
when the real part of n2 goes through zero, 
I a 2n2 1 will in practice always be larger than 
sin2 qJ, since the imaginary part of n2 is then 
different from zero. The second of Eqs. (14) can 
therefore simplified to 
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FIG. 4. Frequency dependence curves: 1) [uti; 2) [u_[; 
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v = 2cos rp I !VI - n 2 sin2 rp + n cos rp + sin2 rp I n2(X]. (17) 

We now go over to an estimate of the relative 
magnitude of the amplitudes of the waves occur
ring in the crystal. According to Eq. (12), u at
tains its largest absolute magnitude, u = 2, at the 
frequency for which n = sin cp. In that point Es 
is twice the amplitude of the incident wave As 
(assuming that cp ;r !1r). From (1 7) it follows, 
for the p -components, that if n > sin cp we can 
neglect the last term in the denominator of ex
pression (17), after which it is clear that v is 
a monotonically decreasing function of n and 
thus also of w. v attains its largest value at the 
frequency for which n = sin cp. This value is 

[V]n=sin'l' = 2 COS cp I (sin cp COS cp + I I();). (18) 

We have retained here also the third term in the 
denominator of Eq. (17), since sin cp can be very 
small. The quantity (18) has a very sharp maxi
mum as a function of cp at the point cp = 0: when 
cp = 0, [v ln=sinc,Q = 2a, i.e., it can take on a value 
of the order of 102• This means that the amplitude 
of the normal transverse wave in a crystal can be 
larger than the amplitude of the incident wave by 
a factor of the order of a hundred. When cp is of 
the order of 5 or 6 degrees, the magnitude of 
( v ] n=sin cp falls to 20 and varies further as 21 sin cp 
with increasing cp (one must bear in mind that fol
lowing a change in cp one must change here the 
frequency, to keep the condition n =sin cp satis
fied). 

In the region w < w0, when n2 < 0, I vI goes 
through a maximum at a frequency determined by 
the condition tan cp = - n2• The maximum value of 
I v I is then equal to 2 cos cp N 1 + 2 sin cp cos cp , 
i.e., it does not exceed two. The amplitude of the 
transverse wave in the crystal can thus not exceed 
appreciably the amplitude of the incident wave in 
this frequency range. 

Figure 5 shows the frequency dependences of 
the absolute magnitudes of the coefficients u 
(curve 1) and v (curve 2) for angles of incidence 
cp =5o and cp = 45°, evaluated by the exact for
mulae of reference 2 [the values of the param
eters are the same as for Figs. 1 - 4 (see case A)]. 

The amplitude of the longitudinal wave in the 
frequency range w ~ w0 can be estimated using 
Eq. (15), which -can be written in simplified form: 

(19) 

From this it is clear that if I n I ,.... sin cp the am
plitude of the longitudinal wave is of the same order 
of magnitude as the amplitude of the transverse 
wave considered above, i.e., it can exceed by· a 

factor of the order of a hundred the amplitude of 
the incident wave. But if In I <sin cp, the am
plitude of the longitudinal wave is larger than the 
normal transverse wave. Figure 5 (curve 3) shows 
the frequency dependence of I E11 I Ap 1. As is clear 
from the figure the peaks of the curves for I E II I Ap I 
and I v I coincide approximately both in height and 
in their position along the frequency scale. 

We must emphasize that the estimates given 
are made assuming that the absorption is so small 
that we can neglect the imaginary part of n2• In 
sele~ted frequency intervals, however, it turns out 
that even a small imaginary part of n2 plays an 
essential role. The condition n = sin cp, for in
stance, used above, cannot even approximately be 
satisfied in the case cp - 0 if n possesses an 
imaginary part. (The fact is that the imaginary part 
of n2 does, generally speaking, not vanish at the fre-
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quency at which the real part of n2 vanishes.) This 
causes in fact a deformation of the curves of Fig. 
5: the peaks are lowered and their position along 
the frequency scale is determined approximately 
by the condition that 11 - n - 2 sin2 cp I be a mini
mum. Moreover, in the region w = 'w0 the con
dition n = 0 will be violated if account is taken 
of the fact that the imaginary part of n is differ
ent from zero. In that point I v I does therefore 
not attain, strictly speaking, an infinite value. 
One can take these changes explicitly into account 
only if the frequency dependence of the absorption 
coefficients of the normal and the longitudinal 
waves are known. 

In case A, when the amplitudes of the four 
transverse waves have the same order of mag
nitude, the results obtained above differ appreci
ably from the results of the usual crystal optics. 
In case B, however, it turns out that the normal 
transverse wave possesses almost the same prop
erties as follow from the usual crystal optics, 
since the amplitude of the anomalous transverse 
wave is very small. Equation (12) is thus, for 
instance, exactly the same as the corresponding 
usual Fresnel equation, and Eq. (17) goes over 
into the usual Fresnel equation if we neglect the 
last term in the denominator. The amplitude of 
the transverse wave in the crystal has thus, as 
in the usual crystal optics, a sharp maximum as 
function of the frequency at the frequency for 
which the condition n = sin cp is satisfied. One 
can easily understand this by considering that 
under the condition mentioned the angle of re
fraction is equal to 90°, i.e., the refracted light 
goes along the crystal surface. The ratio of the 
cross section of the light beam in the crystal to 
the cross section of the corresponding light beam 
in vacuo is then equal to zero. Hence, even though 
Ep is large, the energy flux in the crystal, inte
grated over the cross section, may anyhow be 
small. All the same, however, such a wave 
propagating under the crystal surface itself, 
and possessing a large amplitude, can cause an 
intensive external photoeffect and also a surface 
internal photoeffect. 

As to longitudinal waves in crystals, they do 
not arise, generally speaking, in the usual crystal 
optics, and are the consequence of the new bound
ary conditions formulated in references 1 and 2. 
We must emphasize that these boundary conditions 
do not go over into the boundary conditio:p.s of the 
usual crystal optics, not even in the limiting case 
of very long waves, when one may neglect the ef
fects of the spatial dispersion in the volume equa
tions. Under the condition n =sin cp the ampli-

tude of the longitudinal wave has also a steep max
imum as a function of the frequency and can exceed 
the amplitude of the incident wave by a factor of 
the order of a hundred. But the angle of refraction 
l/lii is smaller by the same factor: 

sin~ u = sin cp In 1 = sin cp I an = I I a. 

The cross section of the light beam in the crystal 
is therefore not small; there is no energy flux into 
the crystal because there is no magnetic field in 
the longitudinal wave .1 •4 This wave is, however, 
able to cause an intensive internal or external 
photoeffect. 

A non-zero energy flux into the crystal, due to 
the expenditure of energy on photoionization can 
be obtained in the next approximation, by intro
ducing a weak absorption of the waves in the 
crystal. 

2. THE CASE OF TWO WAVES OF THE SAME 
POLARIZATION WITH THE SAME REFRAC
TIVE INDEX 

In the following we consider the case where the 
dispersion follows the curve of Fig. 6, i.e., where 
w has an extremum as a function of n2• Equa
tions (20) - (22) which follow refer not only to 
crystals, but also to any dielectric medium with 
a dispersion of the kind shown in Fig. 6 (for in
stance, to a plasma in a magnetic field). Such a 
dispersion occurs, for ins,tance, when the refrac
tive index is expressed by Eq. (7) with negative b. 
In particular, if we are dealing with excitons, this 
case corresponds to M < 0. At the point B (Fig. 6) 
we have n~ = n:. The two solutions, which have 
the form of plane waves with refractive indices 
n+ and n_ and which are usually linearly inde
pendent, are thus identical at the point B and are, 
therefore, only one solution. The second linearly 
independent solution is obtained in that case, as 
is well known, by differentiating the first solution 
with respect to the parameter n. If we write the 
first solution in the form exp { i ( w/ c) n ( s, r)} 
and take it into account that at the boundary be
tween the medium under consideration and the 

B c: n_ 

FIG. 6 
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vacuum (the plane z = 0 ) the relations 

llSx = S0x, llSy = Sou (20) 

must be satisfied by virtue of the usual boundary 
conditions ( s0 is a unit vector in the direction of 
the propagation of the incident wave in the vacuum, 
which is independent of n), the second linearly
independent solution is of the form 

zexp {i 7 n (s, r)}. (21) 

The solution (21) is thus a wave whose amplitude 
increases linearly with the distance z from the 
surface of the medium. 

Both solutions are waves with a zero group 
velocity. This follows from the fact that k = wn/c 
and the reciprocal of the group velocity is 

1 dk n ro dn 
g = ([;"" = c + c dro = 00 ' (22) 

since the derivative dn/dw = oo in the point B, 
because w, as a function of n2, possesses an 
extremum at that point. The energy flux into the 
medium is therefore equal to zero. 

The amplitudes of both waves mentioned above 
can be related to the amplitude of the wave inci
dent from the vacuum if the appropriate boundary 
conditions are known. Turning from the general 
case to the case of light waves in a crystal near 
the exciton absorption band, we can again use 
Eqs. (23) to (29) of reference 2. From these equa
tions we get u+- -u_- oo and v+- -v_- ao 

if n+- n_. If, however, we write down the total 
field of the +wave and the -wave, we get an in
determinate expression of the kind oo- oo. Writ
ing it out explicitly under the assumption that 
n+ - n_, and taking it into account that the quan
tities 

n+s+x = n_s-x = Sox• n+s+u = n_S-y = Soy (23) 

are independent of n±, we get the following re
sults: 

For the s -components: 

E t 2 2ncos<Ji+(irofc)(n2 -p.)z 
s (r, ) = cos tp 2n cos <jl (cos <p + n cos <jl) + n2 - p. 

XA.exp{i(u[~ (s,r)-t]}, 

sin~ = sin 'f 1 n; (24) 

where n is the value of the refractive index for 
the frequency for which n+ and n_ are the same. 

For the p -components: 

Epx ~r, t) = 2Ap ~x exp {i ; n (s, r)}, 
Oz {· w } Epz (r, t) = 2ApR exp t c n (s, r) , (25) 

where 

Q x = cos~ [2n + n2
- P. tan2 ~- n2

- P. tan o/ tan ( ~- o/ 11) 
n n 

iwz ( 2 >] 
+ c cos <jl n - P. • ' 

r n2 - p. n2 - p. ,J, (,J, ,J, Qz =-sino/ 2n--- ---tan'l' tan 'l'-:n) n n 

i (U z ( 2 >] 
+ccos<jl n -p. ' 

cos q, b sin q, 11 tap.<jl 
R - 2n -- + 3n2 - p. + -----"-,--,--,.----: 

- cos <p 3n cos <p cos ( <jl - <jl II ) 

, n2 -· p. sin <jlt·a.!'<Ji 
-r--. n cos <p 

_n2 -p.(cos<jl '· n)tan4tan(cji-cjill), 
n cos <p 1 

• ,1, sin <p sm.'l' 11 =--. 
nil (26) 

The solution (25), (26) is the linear combination of 
the usual wave, of the type exp {i ( w/c) n (s, r)}, 
with a wave (21) satisfying the boundary conditions 
formulated in references 1 and 2. 

We must emphasize that the solution (25), (26) 
is a wave which is not transverse. All the same, 
we can verify that for this solution, too, divE= 0, 
as should be the case in cubic crystals. Equations 
(24) - (26) can be simplified if n2 » 1. We then 
get cos 1/J f:::l 1, J1. f:::l 2n2 and Eq. (24) takes on the 
following form: 

s -components: 
E ( t) = 2 COS 2- (iw I c) nz 

s r' tp 2 cos <p + n 

>< A.exp{iw[; (s,r)-t]~. (27) 

Equations (25) reduce approximately to the fol
lowing ones: 

p -components: 

E ( t) 2 2-(iwnfc)z Apexp{t·w[nc (s,r)-tj}. px r, = cos tp 2 + n cos 'P 

Epz (r, t) ~ 0. 
(28) 

These formulae show that (if cos cp is approxi
mately of order unity) the amplitude of the wave 
in the crystal exceeds the amplitude of the inci
dent wave by a factor ( 4rr/A.) z, where A. is the 
wavelength of the light in the vacuum. 

3. FREQUENCY DEPENDENCE OF THE IMPUR
ITY PHOTOEFFECT IN THE EXCITON AB
SORPTION REGION 

It has been established in several experimental 
papers that both for the internal and for the exter
nal impurity photoeffect the frequency dependence 
of the photocurrent has a maximum in the frequency 
range corresponding to the exciton absorption of 
light in the crystal. In this way, for instance, 
Zhuze and Ryvkin5 were the first to discover in 
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cuprous oxide a maximum in the frequency de
pendence of the photoconductivity at the same 
frequencies at which Gross and collaborators6 

detected exciton absorption in cuprous oxide. The 
frequency dependence of the external impurity 
photoeffect also often shows a maximum at the 
frequencies corresponding to the exciton absorp
tion of light. This was shown experimentally by 
Apker and Taft7 for KI and Rbi films in which 
F -centers played the role of impurities, and by 
Borzyak8 for a cesium-antimony photocathode. 
Later similar maxima were detected by Taft and 
Philipp9 in the spectral distribution of the external 
photoeffect in a number of other alkali halide films 
and in single crystals of KI, and also by Philipp10 

in BaO. In all these cases the intensity of the 
photoeffect was proportional to the impurity con
centration, indicating the impurity character of 
the photoeffect. In the experiments of Apker and 
Taft the proportionality of the photocurrent to the 
intensity of the incident light was also noted. 

One usually explains the connection between the 
photoeffect and the exciton absorption of the light 
(position of the photoeffect maximum in the exciton 
absorption region) as follows. It is assumed that 
the direct influence of the light on the electrons of 
the impurity centers is not very great, because of 
the small impurity concentration. In the exciton 
absorption region, however, the light creates in 
the crystal, a large number of excitons, which 
diffuse and collide with and ionize the impurity 
centers. The energy of light spent on the ioniza
tion of the impurity centers is thus not determined 
by the impurity absorption, which is small, but by 
the intrinsic absorption. 

The exciton photoeffect mechanism described 
here is perfectly feasible and is, perhaps, in some 
cases the dominant one. There is, however, an
other possible explanation of the photoeffect, to 
which we wish to call attention. This explanation 
assumes normal photoionization of the impurity 
centers directly by the electrical field of the light 
wave. It is well known that the probability of such 
an ionization, per unit intensity of the light inci
dent from the vacuum, is equal to 

(29) 

where E is the amplitude of the electrical field of 
the light wave in the crystal, and C (w) a coefficient 
of proportionality independent of the field of the 
light wave and determined by the properties of 
the impurity center and the crystal. C ( w) is a 
smooth function of the light frequency w. As far 
as IE Ill A I is concerned, however, this ratio has 
a sharp maximum as a function of w in the exci-

ton absorption region, as was shown in the preced
ing sections. In the frequency region w ~ w0, for 
instance, we thus have from Eqs. (17) - (19) that 
I v I and I E II I A I can attain values of the order 
of one hundred (for small angles of incidence cp). 
The dependence of I vI and I E11 I A I on the fre
quency is shown in Fig. 5. For w ~ w0, the 
probability for photoionization can thus, accord
ing to (29), be larger by a factor 104 than in the 
neighboring frequency regions. A similar peak 
in the frequency dependence can also occur for 
the photoconductivity and the external photocur
rent, since they are proportional to w while the 
coefficient of proportionality is like C ( w), a 
smooth function of w. 

We must emphasize that such a·high photoeffect 
peak is obtained in the exciton absorption region 
precisely because n2 ~ 0 in the region w ~ w~. 
This however, is not always realized, but only 
when the following conditions are fulfilled: a) The 
oscillator strength for the phototransition in the 
exciton state must not be very small, so as to 
make the constant b in Eq. (7) large. This in
sures the vanishing of n~ or n: in the frequency 
range w = w0, which lies outside the region of 
strong absorption of light. b) The violet side of 
the band under consideration must have no inten
sive absorption bands, the presence of which can 
lead to such deviations from Eq. (7), that neither 
n~ nor n: vanish. c) In the region w ~ w0 the 
light in the crystal must be absorbed only very 
weakly (at the same time, the absorption back
ground must also be weak), so that n2 is almost 
real. Otherwise the condition n = sin cp, which 
is necessary in order that the quantity (17) take 
on the particularly large value (18), will not be 
satisfied even approximately. If these three con
ditions are not realized, the photoeffect peak will 
be appreciably lower. 

We note that our explanation of the photoeffect 
peak in the region of the exciton absorption is es
sentially different from the explanation based upon 
the mechanism of a photocreation of excitons, their 
diffusion and the subsequent transfer of their en
ergy to the electrons of the impurity centers. The 
present explanation requires neither the absorp
tion of light in general nor the formation of real 
excitons. If the latter do appear, it is only as an 
accompanying phenomenon, which is not used for 
the explanation. The whole effect is caused only 
by a large dispersion (connected with the forma
tion of virtual excitons ) which causes n2 to take 
on the value zero. It turns out in this case that 
even the boundary conditions at the surface of the 
crystal lead to such relations between the ampli-
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tudes of the incident wave and the waves occurring 
in the crystal, as to cause I Ep I A I and I E II I A I 
to have a steep maximum as functions of the fre
quency w. 

The value n2 = 0 as a result of a large disper
sion can be realized not only near the exciton ab
sorption band, but also near other bands, for in
stance, the impurity absorption band. In that case 
I Ep I A I will also have a sharp maximum as a 
function of the frequency which leads to a corre
sponding peak in the photoeffect. The longitudinal 
wave, however, will not occur then, since its ap
pearance is caused by the special boundary con
ditions 1 •2 ( P = 0 at the crystal surface) which 
occur near the exciton absorption band, but not 
near the impurity absorption band. 

The probability for the photoionization of an 
impurity center is determined by the total elec
trical field at the point where the center is situ
ated. We must thus take E in Eq. (29) to mean 
the amplitude of the vector sum of the electrical 
fields of all waves occurring in the crystal. 

When n = sin cp the angle of refraction of the 
transverse wave 1/J = 90°. This wave does there
fore not penetrate into the crystal but is propa
gated along its surface, causing an external photo
effect and an internal surface photoeffect. Photo
ionization inside the crystal, however, can be 
caused only by the longitudinal wave, the ampli
tude of which has a peak of the same he_ight as 
the transverse wave and the angle of refraction 
of which, 1/J11, is determined by the condition 
sin 1/J11 =sin cplan. In the case n~ = n: (this is 
possible only for a negative effective exciton mass 
and only for a well defined value of the frequency 
w) a wave occurs with an amplitude which in
creases from the surface into the crystal according 
to Eqs. (24)- (26). If we assume that absorption 
is weak and that the complex refractive index is 
of the form n = n' + iK, K « n', where n' and K 

are real, the wave of Eq. (21) will have an ampli
tude that depends on z, its depth of penetration 
into the crystal, according to the law 

zexp {- wx - 2 -}. 
c eos <jl 

(30) 

This amplitude has a maximum at z = c cos 1/JI wK. 
The probability for ionization of an impurity will 
thus change with z as the square of the amplitude 
(30). Therefore, when a thin plane-parallel crystal 
plate is illuminated, the intensity of the external 
photoeffect will turn out to be less at the illumi
nated side of the plate than at the back side. 

An experimental verification of the theory given 
here would be a quantitative agreement between the 
formulae obtained and experiment. In particular, 
the theory predicts the appearance of a peak in the 
photoeffect only then when the refractive index be-

comes much less than unity. Moreover, Eqs. (17) 
and (18) predict a definite dependence of the peak 
height on cp. The peak height must also depend 
essentially on the polarization of the incident light, 
since for p -components the ratio I Ep I Ap I can 
be very large (of the order of a hundred), and a 
longitudinal wave with the same peak in amplitude 
occurs as well, while for the s-component I Esl As I 
does not exceed two and no longitudinal wave ap
pears. For the s-component the peak in the photo
current can thus not be large in the exciton absorp
tion region. 

In conclusion we note that the present idea of 
the explanation of the photoeffect peak in the re
gion of exciton absorption of light was first pro
posed by one of the authors at the First All-Union 
Conference on Photoelectrical and Optical Phe
nomena in Semiconductors (Kiev, 1957).11 

The authors express their gratitude to I. G. Zas
lavskaya for performing the numerical calculations. 
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