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A momentum space of constant curvature is introduced into the theory in place of the 
pseudo-Euclidean momentum space. The Feynman diagram technique is suitably 
generalized. Finite results are obtained in the lowest order perturbation theory approxi
mation for the fermion and boson self-energy. 

INTRODUCTION 

THE formulation of a theory of elementary par
ticles free of the "ultraviolet catastrophe" is, appar
ently, impossible without the introduction of an "ele
mentary length" 10 which defines the limit down to 
which the ordinary concepts of space are still valid. 
Another equivalent possibility is the introduction 
into the theory of a "limiting mass" Jl "' 1/10, 

which establishes corresponding limitations in mo
mentum space. The present paper is devoted to an 
attempt of formulation of such a theory. A brief 
formulation of the principal idea consists of the 
following. The four-dimensional momentum 
space is a space of constant curvature. The ra-
dius of curvature of this space is the limiting 
mass IJ.o· The theory must be formulated in 
accordance with the geometry of a p -space of 
constant curvature. 

The existence of a geometric principle intro
duces a considerable degree of uniqueness into the 
formulation of the theory. At the same time a con
sistent development of this principle leads to far
reaching consequences, the most important of 
which is the conclusion that in this theory the law 
of conservation of energy and momentum appears 
in an altered form. Apparently other physical 
concepts, for example, coordinate space and the 
condition of microcausality, will also have to 
undergo a similarly serious alteration. 

In the present paper Feynman's diagram tech
nique is generalized in the spirit of the geometry 
of a p -space of constant curvature (Sec. 3). Pre
liminary investigations (Sec. 4) show that "ultra
violet" divergences are not very likely to arise 
within such a scheme. 

Diagram technique is one of the fundamental 
tools of the modern theory of elementary particles. 

Therefore the possibility of generalizing this tech
nique to the case of a p -space of constant curva
ture may be regarded as a hopeful result. How
ever, to formulate a consistent theory of elemen
tary particles it is necessary to subject to a simi
lar generalization many other aspects which play 
an important role in modern theory. 

1. MOMENTUM SPACE OF CONSTANT CURVA
TURE 

The principal role in the theory under discussion 
is played by the p -space of constant curvature. 
The radius of curvature of this space JJ.o has the 
dimensions of a mass. The usual theory corre
sponds to the case JJ.o = oo. We shall consider the 
magnitude of IJ.o to be finite, and shall assume 
only that the masses of the elementary particles 
satisfy the condition m « Jlo • The numerical 
value of the constant IJ.o must be determined from 
experiment. In the following we adopt a system of 
units in which llo = c = fi = 1, so that all the rela
tionships take on dimensionless form. 

The general method of constructing spaces of 
constant curvature, based on the introduction of a 
projective metric into the space, was developed by 
F. Klein.1 In following this method we isolate in 
the four dimensional p -space the hypersurface 

(1.1) 

and we define the non-Euclidean distance between 
the points p and q in the form 

D(p, q) = ln(J + VJC!), 

J = (1- pq) I V(l- p2) (1- q2 ). (1.2) 

We henceforth adopt the following notation: 
p, q, ... denote four-vectors in p -space, for 
example p = (p1, p2, p3, p4 ) • The scalar product 
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of the vectors p and q is given by pq = P•CU -
Ptqt - P2q2 - Paqa; P2 = pp. 

If all the components of the vectors p and q 
are much less than unity, then up to terms of 
higher order 

i.e., the metric is pseudo-Euclidean near the ori
gin. The hypersurface ( 1.1) divides the whole 
p -space into two parts, interior (p2 < 1) and ex
terior ( p2 > 1 ) . According to ( 1. 2 ) the "dis
tance" D between points lying in the interior and 
exterior regions is complex. The momenta of 
real particles always lie in the interior region. 
However, there are no reasons for considering 
that the momenta of virtual particles cannot take 
on values lying in the exterior part. 

From expression (1.2) we can easily obtain for 
our space the differential metric form which de
fines the square of the distance between two infi
nitely close points p and q = p + dp 

d~2 =(I- p2fl {dp2 +(I- p2f1 (pdp)2}, 

from which we find in the usual manner the mag
nitude of the volume element 

(1.3) 

To compute the volume of the whole space it is 
necessary to indicate the manner of going around 
the singularities situated on the hypersurface 
p2 = 1. We define the volume of the space in the 
following manner 

The manner of evaluating the integral ( 1.4 ) is 
illustrated in Fig. 1. Cuts are introduced in the 
complex plane of P• from the branch points 
P4 = ±...; 1 + p2 - io. The path of integration 1-2 
can be transformed without crossing the cuts into 
the path of integration 3 - 4 {the integrals along 
the arcs of the large circles tend to zero) . 
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FIG. 1 

As a result we obtain 

n = i I (I + p2 + p2 + p2 + p2)-•;, d4p = _!_ irt2 
~ 12 3 4 3-

The imaginary value of the volume Q of the space 
does not lead to any difficulties. In view of the fact 
that the volume Q is finite, the integrals over the 
momenta of the virtual particles of the self-energy 
type converge. In evaluating these integrals, the 
same procedure is utilized as for the evaluation of 
the volume Q. 

2. THE GROUP OF MOTIONS OF p -SPACE 

The group of motions in p -space consists of 
all the point transformations that leave invariant 
the distance { 1.2). According to the general 
theory due to Klein, 1 the motions in p -space are 
described by projective {i.e., linear or fraction
ally linear with respect to the components of the 
vector p ) transformations which transform the 
hypersurface ( 1.1) into itself. Evidently the 
group of motions in p -space contains the group of 
Lorentz transformations which leave invariant the 
magnitude of p2 and which transform the point 
p = 0 into itself. 

In addition to the Lorentz transformations, the 
group of motions contains also the "displacement" 
transformations. Each displacement transforms 
the point p = 0 into some point k, with a one-to
one correspondence existing between the vectors 
k and the operations of displacement. This en
ables us to speak of "displacements by a vector 
k." Symbolically we shall represent the effect of 
displacements by equalities of the following type 

q = P(+)k, {2.1) 

by which we understand that the vector q was 
formed as the result of displacing the vector p by 
the vector k. The relation (2.1) establishes a 
certain law of addition of vectors in p -space. The 
most characteristic feature of this "addition" is 
that it does not commute 

p(+)k=f=k(+)p. 

The operation which is the inverse of the displace
ment by a vector k is a displacement by a vector 
- k. The result of such a displacement we shall 
denote by an equality of the type 

q = p(-)k. 

These definitions may be generalized in an obvious 
manner to a "sum" of several vectors. For exam
ple, the equality 

q = p ( -!-) k (-) l ( +) n, (2.2) 

denotes the consecutive application to the vector p 
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of displacements by k, by -Z and by n. Of 
course the order of the "addends" in (2.2) is im
portant. 

We note that the operations of displacement do 
not form a group; the product of two displacements 
will no longer be a displacement. One may show 
that displacements generate the whole group of 
motions in p -space. 

Explicitly the "sum" of two vectors is defined 
by the expression 

q = P(+ )k = p VT=k'+ k(1 + pk)! (1 + Vf=!l2). (2.3) 
1 + pk 

If both vectors p and k are small (p J.L, kJ.L « 1) 
then 

P(+)k=p + k, 

i.e., near the origin of coordinates the "addition" 
of vectors defined by formula (2.3) coincides, up 
to higher order terms, with ordinary addition. The 
following equality follows immediately from ( 2.3) : 

I I VI- q2 =(I_,__ pk) !VO- p2) (I- k 2), (2.4) 

from which it can be seen that the transformation 
( 2.3) describes the motion in p -space, since it 
follows from p2 = 1 that q2 = 1. 

In going over to a p -space of constant curvature 
a new feature arises, associated with the transfor
mation of spinors under displacements. While in 
the case of a pseudo-Euclidean space spinors do 
not transform under a displacement, in the case 
of a "curved" space it is neeessary to make a dis
placement by a vector k correspond to the fol
lowing transformation of the bispinor lj;: 

d(k) = [(1-k)/(1 + k)(', (2.5) 

where 

The relation ( 2.5) follows from the connection 
between the group of motions in p .-space consid
ered by us with the rotation group of a certain 
pseudo-Euclidean five-dimensional space. 

3. PRINCIPLES OF THE DIAGRAM TECHNIQUE 

To describe interactions between elementary 
particles, we make use of Feynman's diagram tech
nique, 2 altered in the spirit of the geometry of p -
space of constant curvature. We consider the inter
action of a Fermi-field with a Bose-field. Let us 
trace the changes in the momentum of the fermion 
along a line (we shaH consiqer both fermion and 
boson lines to be directed) . In the usual theory, 
the law of conservation of energy-momentum holds 

at each vertex of the diagram. If the momentum of 
the fermion is p "before" the absorption of the 
boson, then "after" absorption it becomes equal to 
p + k, where k is the momentum of the absorbed 
boson. In going over to "curved" p -space, it is 
necessary to alter the rule for the addition of mo
menta at the vertices of the diagram: ordinary 
geometric addition of momenta is replaced by 
addition in the sense of Eq. (2.3 ). This rule is 
formulated more exactly in the following manner: 
if at the beginning of the line the fermion had a 
momentum p, then after the vertex of the diagram 
which corresponds to the absorption of a boson of 
momentum k, we must replace p by p ( +) k, while 
after a vertex which corresponds to the emission of 
a boson with momentum k', we should replace it by 
p ( - ) k'. In moving along a fermion line in this 
manner we obtain a unique result for the final mo
mentum p'. The sequence of operations required 
for this is determined by the sequence of vertices 
along the fermion line. Figure 2 shows several of 
the simplest diagrams which illustrate the rule of 
addition of momenta. As can be seen in the exam
ples of the diagrams of Fig. 2, the relation between 
the values of the energy-momentum vectors of the 
particles before and after scattering is no longer 
universal, but depends on the nature of the scatter
ing process. 

Thus we conclude that the introduction into the 
theory of a p -space of constant curvature instead 
of the pseudo-Euclidean space requires the altera
tion of the usual form of the law of conservation of 
energy-momentum. In the new scheme the latter is 
only approximate, and is valid in the case when the 
energy and the momentum of the interacting par
ticles are small. This follows directly from the 
fact that for small values of energy and momentum 
the new law of addition goes over into the ordinary 

a b 

c d 

FIG. 2 
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law of geometric addition of vectors (Sec. 2). 
After the nature of the change in the momenta 

along a fermion line has been established, all the 
Feynman rules for the calculation of matrix ele
ments corresponding to a given diagram can be 
directly generalized. The propagation factor 
D ( k) corresponds to the boson line with mom en
tum k, while the propagation factor G (p) cor
responds to the fermion line of momentum p. To 
the segment of an internal fermion line with mo
mentum p ( +) k there corresponds the propagation 
factor 

d-1 (k) G (p ( +) k)d (k). (3.1) 

The appearance in the expression (3.1) of the ma
trix d (k) is associated with the transformation of 
spinors (2.5) under displacements by vector k. 
For the sake of simplicity we set the vertex opera
tor r equal to unity, i.e., we consider the case of 
scalar bosons with scalar coupling. Finally, it is 
necessary to integrate over the volume of the whole 
p -space over the momenta of all the virtual par
ticles which are not defined uniquely by the law of 
addition. In carrying out this integration, it is 
necessary to take into account Feynman' s rule for 
going around the poles and to rotate through quad
rants the contour of integration over the mom en
tum components as shown in Fig. 1. 

4. SOME CONSEQUENCES OF NON-COMMUTATIV
ITY OF "ADDITION" OF MOMENTA 

We shall illustrate by means of simplest exam
ples results due to non-commutativity of "addition" 
of momenta. We first consider a first-order pro
cess (diagram a, Fig. 2) . It can be easily shown 
that, just as in the usual theory, a free particle 
cannot emit a boson. This follows directly from 
relation ( 2.4) , in which we must set q2 = p2 = m 2, 

k2 = Jl2• In going over to the fermion rest system, 
we obtain 

I +mw = Y 1 !J-2 • (4.1) 

Obviously Eq. (4.1) cannot hold for positive values 
of the boson energy w. 

As a second example, we consider the scatter
ing of a boson by a fermion. This process corre
sponds to two second-order diagrams (Fig. 2, b, c), 
which differ in the order of emission and absorp
tion of the boson. Whereas in the usual theory 
both these diagrams contribute to the same scat
tering process, in our case, because of the non
commutativity of the "addition" of momenta, they 
lead to different final states starting from the 
same initial momenta p and k of the colliding 

particles. In other words, these diagrams de
scribe two different scattering processes. For 
the sake of simplicity we write for the boson mass 
Jl = 0 and establish certain generalizations of the 
well-known Compton formula. By assuming that 
the fermion is at rest in the initial state, while 
the momenta of the quantum before and after 
scattering are respectively equal to k = ( k, w) 

and k' = (k'' w'), we easily obtain, with the aid 
of relations (2 .3) and (2 .4), expressions fol:" the 
energy of the scattered quantum w' as a function 
of the energy of the incident quantum w and of 
the scattering angle e. For the case of the dia
gram of Fig. 2c we obtain: 

w~ = 2wc/[l + Vl-4w~sin2 (B;2)]. (4.2) 

For the case of the diagram of Fig. 2d we have: 

(4.3) 

where w0 is the energy of the scattered quantum 
which corresponds to the Compton formula 

We= w;[l + (w/m) (1-cosB)]. 

It is clear that for w or w0 « 1 

However, when w ~ 1 considerable deviations 
from the Compton formula do occur. We consider 
scattering through an angle e = 90°. When w » m 
we have we = m « 1. At the same time 

w~ = m, w~ = m; (1 + mw/2). 

The "line splitting" arising in this case 

~w(w~ = ( w~ - w~);w~ = mw(2 

increases proportionally to the energy of the inci
dent quantum. 

5. SIMPLEST SELF-ENERGY DIAGRAMS 

Let us consider the expressions for the self
energy of the fermion and the boson in second
order perturbation theory, corresponding to the 
diagrams of Fig. 3. According to the general 
rules of Sec. 4 we obtain for the self-energy of 
the fermion 

a b 

FIG. 3 
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g2 \ ' g2 v 1 - p2 
l:(p)= (2n)•i Jd(k)G(p(-)k)d-1 (k)D(k)dQk, (5.1) L:(p)= (:On)•i 

while for the self-energy of the boson we obtain 

II{k)= .t) .. \sp{G(p)d(k)G(p(-)k)d-1 (k)}dQP. (5.2) 
(.:.1t I J 

To estimate the integrals (5.1) and (5.2) it is nec
essary to know the explicit form of the propagation 
factors D (k) and G (p ). 

However, within the framework of the prelimi
nary outline of the theory developed here, we can
not determine uniquely the forms of these factors. 
Therefore as an additional hypothesis we set 

D (k) = (I - k2)/(k2- p.2), 

G {p) = VI- p2/(p- m). (5.3) 

The choice of expressions (5.3) is based, on the 
one hand, on the correspondence principle for small 
values of the momenta and, on the other hand, on 
the special nature of the hypersurface (1.1) which 
plays a fundamental role in the whole theory. We 
particularly emphasize the utterly tentative nature 
of expressions (5.3), the form of which may undergo 
significant changes in a consistent theory. 

Fairly simple calculations yield 

d {k) G (p(-)k)d-1(k) 

Jf(1 - k2 ) (t- p2 ) {1-m) 11- kp) - (1 -k) (1 + p)} 
(1 + k2) (1- p')- (1- nz2) (1- kp)2 • (5.4) 

Substituting (5.3) and (5.4) into the expressions for 
the self-energy we obtain 

(5.5) 

I£ (k) = g• Vr=k2 
4n41 

\ 1-p•- (1 + m21 (1- kp) d 4 

x.l[(1-k2) (1-p•)- (1-m2 ) (i-kp)2) (p2 -m2 ) (1-p2)'1• p. 

(5.6) 

To evaluate the integrals (5.5) and (5.6) we must 
utilize the procedure indicated at the end of Sec. 3. 
In this way, convergent results are obtained. There 
is no point in carrying out a more detailed analysis 
of the singularities of the foregoing expressions, 
since such an investigation depends on the forms 
of the functions D and G. The most important 
result is the absence of the ultraviolet catastrophe, 
and this result most probably will hold also in a 
consistent theory. 
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