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The velocity distribution function for electrons in a weakly ionized plasma has been found 
with account of inelastic collisions. It is shown that the inelastic collisions lead to a sharp 
drop in the distribution function for electron energies exceeding the excitation (or ioniza­
tion) energy. 

INTRODUCTION 

IN finding the velocity distribution function for 
electrons in inelastic collisions, one usually neg­
lects completely the fact that the function is valid 
only under the condition that the mean energy of 
the electrons is much smaller than the excitation 
(or ionization) energy. In many cases, and in 
particular, in the study of phenomena taking place 
in gas discharges, this proves to be a serious limi­
tation. In a number of researches, 1- 3 approximate 
methods of solution have been found which permit 
the energy losses in inelastic collisions to be taken 
into account. However, these methods have lim­
ited applicability, and apply essentially to cases 
in which the mean energy of the electrons is not 
very great, so that the inelastic collisions affect 
chiefly the tail of the distribution function. More­
over, they assume some particular form for the 
dependence of the cross section on the velocity; 
the model of inelastic collisions used by Davydov3 

is very rough, and leads to the divergence of the 
distribution at small velocities. It should also be 
noted that there is an error in the work of Smit2 

(see below); however, in the case considered there 
of small E/p ( E is the electric field intensity, 
p the gas pressure), the error is shown to be 
unimportant. 

Under these conditions, it is desirable to de­
velop a method free from these limitations; the 
present paper is devoted to such a development. 

We consider the case of a spatially homogene­
ous plasma, in which the ionization is so small 
that we can neglect the Coulomb interaction. The 
generalization of this method to the case of a suf­
ficiently strong ionization, in which the electron­
electron interaction becomes important, will be 
considered below. 
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1. FUNDAMENTAL EQUATIONS 

Let us first consider the case in which the 
electric and magnetic fields do not depend on the 
time. Then the kinetic equation for the determi­
nation of the stationary electron distribution func­
tion has the form 

M N 

{'\' + [v.Q]} of I av = Sta + ~ St~m> + ~ StJn> + St,, (1.1) 
m n 

where y = eE/me, n = eH/mec while Sta. 
St~m>, St\n> and Str are terms taking into ac­
count, respectively, the elastic collisions of elec­
trons with molecules, excitation of the m -th level, 
ionization ( n -fold), and recombination (volume 
for high pressures and surface for low). Here we 
have neglected collisions of second order, inas­
much as these do not play an important role for 
weak ionization. Moreover, we confine ourselves 
to monatomic molecules. In the case of polyatomic 
molecules, it is necessary to take into considera­
tion the excitation of vibrational and rotational 
levels, and also dissociation. This can easily be 
done by an analogous method. 

The expression for Sta has the usual form 
(see, for example, reference 4), while for the 
inelastic collisions we assume an approximate 
model and set 

• ll(m)' 

St~m)~=- v~m) (v)f (v, 0, rp) + v~m) (v~m>) ~ f (v~m>,O,rp) (1.2) 

~(n) 

stjn> =- v~n> (v) f (v, 0, rp) + "'lv~n> (v~n>) ~~~ f (v~n>,B,rp) 

(1.3) 

where v~m> = N0va~m>, v~n> = N0va~n>; N0 is t4e 
number of atoms per unit volume; o~m> and atnl 
are the excitation cross sections of the m -th level 
and the n-fold ionization, averaged over the angles; 
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v~m) = {V2 + 2s~m) I m,)'l•, vjn> = (7JV2 +,2s~n) 1m,)~. 
vln> = (~v2 + 2sfn> I m,) 'i:., 

(m) d (U) th . . ' Ee an Ei are e correspondmg energies of 
excitation and ionization, while the quantities 1 < TJ 

< oo and 'i) = rtf ( TJ -1 ) take into account the en­
ergy distribution between the primary scattered 
and the secondary electrons in the ionization. In­
asmuch as the distribution of secondary electrons 
has a maximum for low velocities, while the scat­
tered distribution has one at high velocities, 5 we 
can usually assume TJ "' 1. 

As regards the term Str, it is introduced to 
satisfy the law of conservation of the number of 
particles. Account of it in the stationary case 
has importance in principle, although the specific 
form is shown to be unimportant. We set 

St, = - v, (v} f (v, e, cp), 

where, as follows from (1.1), the relation 
N 

~ (st, + l]st<n>) dv = o 
n=l 

(1.4) 

(1.5) 

must hold. (N is the maximum multiplicity of 
ionization.) It is easy to prove that if St~m> and 
St{n> are written in this manner, the laws of con­
servation of energy and of the number of particles 
are satisfied. The law of conservation of momen­
tum is not satisfied. However, inasmuch as the 
form of the non -isotropic part of the distribution 
function is fundamentally determined by elastic 
collisions, this does not have a significant effect 
on the isotropic part of the distribution function. 

Following Davydov, 3 let us expand f in a series 
of spherical harmonics in velocity space: 

f (v, 6, cp} = fo (v} + vft(v} +X (v, e, cp). (1.6) 

where X ( v, e, cp ) represents the remaining terms 
in the expansion. 

If neutral atoms have a Maxwellian distribution 
with temperature T 0, then it can be shown (see, 
for example, reference 4) that, accurate to quan­
tities of first order of smallness in o = me /mi. 
we obtain 

Sta (fo) = ~ f v3va (v} [to+ kTo ~o] 
v v m,v iJv ' 

Sta (vf1} = - Va (v} vf1 , 

(1. 7) 

(1.8) 

where va is the frequency of the elastic collisions. 
We substitute Eq. (1.6) in Eq. (1.1), and inte­

grate over the angles e and cp. Taking Eq. (1. 7) 
into account, and also the condition of the orthog­
onality of the spherical harmonics, we obtain, 
after a single integration over v: 

ova(v) [f + kTo iJfo]- _.!._ f - S {fo)- 0 (1.9) 
,_ 0 m,u iJu 3 1: 1 rJ - • 

where 
v<m) 

M e v 

S (f) =-=- : 2 {.Ll ~ v~m> (v) f (v) v2dv- ~ v, {v) f (v) v2dv 
·m tv o 

v(n) ~{n) 
N l D; 

+ .L] [ ~ v~n) (v)f (v) v2dv + ) v~n) (v)f (v) v2 dv ]} • (1.10) 
n v o 

Multiplying (1.1) by v, and again integrating over 
the angles, we find (neglecting* the correction x 
in comparison with f0 ): 

Since, in writing down the initial equation, we 
have neglected the law of conservation of momen­
tum for inelastic collisions, we can also neglect 
the third term on the left in Eq. (1.11) in compari­
son with the first. Then, solving (1.11) relative to 
ft, and substituting the resultant expression in 
(1.9), we obtain an equation for the isotropic part 
of the distribution function fo ( v): 

ova(v)[fo+ kTo iJfo]+czr _.!._iJfo_S(f0)=0 
merJ iJrJ 3va rJ iJv v ' (1.12) 

where 

() r+[rx!l]Jv;+n(r!l)/v~ 
Ot v = ___ ..;__-o:--:----_:: 

1+02 /v; · 
(1.13) 

Inasmuch as the magnetic field enters into Eq. (1.12) 
only in the form of the product a .y, we shall every­
where below assume for simplicity that 0 = 0, hav­
ing in view that the generalization of results to the 
Ca$e 0 >" 0 reduces simply to replacing the quan­
tity f.J. (u) in the obtained formulas (see 1.18) by 

u _ 3kTo a~~ 2 u . '"V!'P~ (u) + Q2 cos2 (r!h 
ILH()-~cpa()-t- ~22 () n2 .(1.13a) 

e 1 . '~a'Pa U + 
We change in (L12) to a new independent vari­

able u and to a new function A ( u ) by the for­
mulas 

U=m,v2 12s~1>, f0(v)lv=v<u>=f00 (u)A(u), (1.14) 

where foo (u) is the solution of the equation in the 
absence of the inelastic collisions. Now, setting 

Va = Ya cpa (u), v, = :;; cp, (u) u-'f,, 

'l~m) = v~m)rp~m) (u) u-'1•, 'l~n) = v~n)rp~n) (u) u-'!., (1.15) 

h "' "' "'(m) "'(ll) w ere v a• v r• v e and vi are certain con-
stants, chosen to make cpa( 1) = cpr( 1) = 1 and 
to make the functions cp~m> and cpfn> of the 
order of unity for u » 1, we get 

dA [ ~ J du + Q (u) F {A}-},~) rp,f00A du = 0. (1.16) 
0 

*It can be shown that for A2e » 1, the function 
X- (fov/i:l).\e-(2q + 1)/(q + 1) « fo. 
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Here 

M 

F {A}= ~)..;,m 

u+u~m) 

~ {00 (u)rp~m>(u)A(u)du 
m u 

N 11u+u~n) 

-t- ~ t..7n [ ~ foo (u) rp~nl (u) A (u) du 
n u 

>lu+u~n) 

+ ~ f 00 (u) tplnl (u) A (u) du], (1.17) 
0 

Q (u) = tpa (u) I u'1' fooP.• 
u 

f 00 = exp {- ~ du I ur} , 
0 

p. = (3kT 0 o~; I me"!'2 ). rp~ ( u) + I, 

ur = r 2m,p. (u) 1 3ov~sP>rp~ (u), 

(1.18) 

A;m = 3s~l)~a~~m) /2mej2 , t..7n = 3s~1 )~a~}nl I 2me''(2 = t..;m~~m. 

f..~= 3s~1l~a'Vrl2md, 

We note that, in accord with (1.5), 
co N oo 

A~ ~ tflr f 00 A du = L] t..7n ~ rp)n> f 00 A du. (1.19) 
0 n o 

This condition is very important. Actually, if it is 
not satisfied, then, as follows from (1.16), A (u) 
vanishes for a finite value of u, whereas its deriv­
ative at this point undergoes a jump, which is phys­
ically witho1,1.t meaning. In essence, (1.19) is equiv­
alent to the requirement 

oA I ou--+ 0 for u--+ oo, A (u)-+ 0. (1.20) 

In the work of Smit,2 the loss of particles as the 
result of recombination was not taken into account; 
hence condition (1.19) was not fulfilled. However, 
in the solution of the equation, the author used the 
condition (1.20) (which is not compatible with the 
initial equation in this case), and thus obtained 
correct results for u > 1. 

2. SOLUTION OF THE EQUATION FOR A (u) 

To avoid needless complications, we first con­
sider the case in which only a single ionization 
( N = 1) is possible, and there is either only one 
level of excitation (M = 1 ), or the distance be­
tween the levels is so small ( u~M) - 1 « 1 ) that 
E~1l can be replaced by some average excitation 
energy 'Ee, while cp~m> can be replaced by the 
mean frequency of excitation. 

An exact solution of Eq. (1.16) is evidently im­
possible without going to numerical integration. 
However, one can attempt to apply an approximate 
method of solution, which is essentially the expan­
sion of A (u) in inverse powers of the parameter 

A.~ 1 • Actually, as follows from its definition, this 
parameter is of the same order of magnitude as 
the ratio of the energy· lost per unit time by the 
electron (with velocity corresponding to the max­
·imum of the frequency of ionization) on excitation 
to the energy obtained by it from the external field, 
i.e., it is usually much greater than unity.* Thus, 
we shall solve the equation for A (u) under the 
assumption that A.~ 1 » 1. 

We note that, as follows from the discussion 
below, the function A (u) falls off with distance 
as ,..., 1/A.et• whereas f00 (u) depends on distance 
as ,..., 1/oA.~1 • Consequently, since o « 1, we 
can, for not very large A.e1 (less than o -t), re­
move the function f00 in Eqs. (1.16), (1.17) from 
under the integral sign. t Then, denoting by AI ( u) 
the solution for u ::::: 1, and by An (u) the solu­
tion for u ::::: 1, and dropping the index (1) in 
A.eto E11, cp~1l and cpi0 , we obtain 

u 

A;1 (u) + Q1(u) ["~-; F 1 {Au}- f..~~ rp,Au du] = 0 (2.1) 
0 

for u::::: 1 and 
u 

A; (u)- )..~ Q1 (u) ~ tprAI du =- )..; Q1 (u) F 1 {Au} (2.2) 

for u ::::: 1, where 
u-j-1 

0 

F 1 {Au}= ~ tpe (u) Au (u) du 
u 

1Ju+u; >lu+u; 

+ ~2 [ ~ rpt(u) A11 (u) du + ~ rp; (u) A11 (u) du], (2.3) 
u 0 

Ql (u) = tfla (u) I u'1• p. (u). (2.4) 

The prime here and below denotes differentiation 
with respect to the argument. 

To begin, let us consider Eq. (2.1). We assume 
that the condition 

[In A11 (u)]' :> I, (2.5) 

is satisfied, i.e., the function An (u) falls off 
rapidly in the interval [ u, u + 1], and differenti­
ate (2.1) with respect to u. Then, considering 
that, by (1.19), A.~ ~ 1 and A.~ » 1, and neglect­
ing An(u+1) incomparisonwith An(u), we 
find, with accuracy ~ A.e2, the equation of first 
approximation 

*The case of very large E/p, when the quantity A2el be­
comes smaller than unity, will not now be considered, inas" 
much as for such values of E/p, the percent ionization is 
sufficiently high and it is necessary to take into account the 
electron-electron interaction. 

tThe case Ael > D-1 always corresponds to low (of the 
order of several hundred degrees) mean energies of electrons, 
when the inelastic collisions no longer play a role. 
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(AlP)"- (In Ql (u))' (A1Pr- A;p2 (u) AW = o, (2.6) 

where 

p2 (u) = Q1 (u) [<p,(u) + ~2<pi (u)]o (2. 7) 

Up to now we have made no assumptions con­
cerning the form of the dependence of the cross 
section on the velocity. We now assume that cpe, 
CfJi, and CfJa are such that p2 vanishes nowhere, 
except at the point u = 1, while as u -- 1, 

(2.8) 

where q > 0 and p~ > 0 are certain constants 
which depend on the behavior of the functions C{Je 

and CfJi close to the thresholds of excitation and 
ionization. 

Let us change variables in Eq. (2.6), introducing 
the independent variable 

u 1/(!+q) 

x(u)=[(q+ !)Ae~p(u)du] (2.9) 
1. 

and the new function 

Y (x) = (x' (u) I Q1 (u))'1• AIJl (u) /u (x)o 

We then get for Y ( x ) the equation 

Y" (x)- [C (x) + x2q) Y (x) = 0, 

where 

(2.10) 

(2.11) 

C(x) = + {(x'f''• [(x'f''• x"]' + (x' Q1r2 H- (Q~)2 - QlQ:)} lu(x)o 

An estimate shows that the function t (x) will, 
generally speaking, be of the order of 
2-tfq(A.ePo)-tfq<q+O, i.e., very small both for 
x close to zero and for large values of x. It can 
become large only if u approaches the next root 
of the function p2 ( u). Inasmuch as we have as­
sumed that the function p2 ( u) never vanishes 
for u>1, wecanneglect t(x) inEq.(2.11) 
in comparison with x2q and obtain 

Y"-x2qY = 0, (2.12) 

whence, by taking account of the condition (1.20), 

where Kn is the MacDonald function of order n 
and C0 is a constant, so chosen that Vq(O) = 1. 
Thus 

A\P (u) = const 0 [Q1 I x'J'1' Vq (x) lx(u)• 

and the condition (2.5) takes the form 

A; p2 (u) > I. 

(2.14) 

(2.15) 

It then follows that, for sufficiently large u, when 
A.~p2 (u) ~ 1, the solution (2.14) turns out to be in-

valid. However, for these values of u, the func­
tion AfP is already very small ( ~ exp [ - A.~0 )) 
and consequently is not of interest. 

For A.~~ » 1, we can limit ourselves entirely 
to the first approximation AfP. If A.ePo 0 becomes 
of the order of·unity, then it is necessary to use 
the solution A~p, obtained in second approxima­
tion. Assuming, as before, that for u > 1, 

1lU+ttt U 

A~ ~ <piA du::::: A~~ <prA du, 
0 0 

we find from (2.1) that 
00 

Aa) (u) = A;~ Ql (u) J {A\Y} du, (2 .16) 
u 

where 
u+l 11U+ui 

J {AW} = ~ <pe A\P du + ~2 ~ <p; A\P duo (2:17) 
a u 

We now proceed to the finding of the function 
Ar (u ). Generally speaking, for an exact solution 
of Eq. (2.2) it is necessary to give an explicit form 
for CfJr (u ), which, unfortunately, is very littfe 
kno~. We can prove, however, that in the case 
under discussion here, the term proportional to 
A.~ plays an important role only in the region of 
small values of u, where it leads to a certain 
increase in Ar (u). Moreover, inasmuch as the 
distribution function for u < 1 is needed essen­
tially only for the calculation of the normalizing 
factor, then, taking it into account that 'if» 7'/, 

we can set, without excessive error., 
u 

t,; F 1 {AW}- A~~ <prAr du = A;J {A\P}, 
0 

whence 
1 

Ar (u) = Ali) (I)+),;~ Q1 (u) J {Aff>} du 
u 

0> 

= A;~ Ql (u) J {A{t)} duo (2.18) 

ll 

The results obtained for Ar (u) and An {u) 
can be materially simplified by making use of the 
fact that Vq (x) is a rapidly decreasing function. 
We first note that: a) if Ui is close to unity, so 
that a (ui -1) < 1, where a= (A.eP0 )etf<q+t>, 
then we can write 

u+l :;Ju+l 

J =[I + ~2r1 { ~ Q~1p2AJI> du + ~2 ~ Q~1p2 AW du}; 
a u 

(2 .19) 

b) in the opposite case, when a (ui- 1) > 1, we 
can neglect the second component in (2.17) and get 

a+l 

J= ~ Q~1p2A\\>du, (2.19') 
u 
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i.e., case b) is obtained from a) if we set (32 = 0 
in the latter. Therefore, we limit our considera­
tions to the case a).* Substituting (2.14) in Eqs. 
(2.16) and (2.18), and integrating, we obtain [bear­
ing in mind that, for u > 1, the function AfP ( u) 
decreases rapidly] : 

An(u) =canst· [;.~·,~~lJ''{vq (x(u)) 

-(1 + ~2t1 [x·~~(~1) Vq(x(u+ 1)) 

+~2 x'(u} Vq(X(~u+1))]}• (2.20) 
1J x' (1JU + 1) 

where the index (2) in Afp(u) is omitted, and 

Ar (u) =An (1) 

-(I+ ~2 tla. ["(u) [(I t- ~2 ) V~(O)- V~(x(u +I)) 
2 

-~2V~(x(~u+ 1))]-x'(u+ 1) ~ 't(u-l)x2qVq(x(u))du 

;-+1 
u+l 

-~2x'(~u+ I) j "(u~ 1)x2qVq(x(u))du}, (2.21) 

1JU+l 

where 
l 

( \ Q, (u) d 
't U) = ~ Q, (1) U. (2.22) 

u 

The resulting values apply to the case in which 
only single ionization is possible ( N = 1 ) and 
there is only one excitation level ( M = 1). How­
ever, it is easy to generalize it to the case of ar­
bitrary N and M. Actually, Eqs. (2.9) and (2.14) 
for AfP and Eqs. (2.16) and (2.18) for Ar(u) and 
A~p ( u) evidently remain valid even in the case in 
which we replace the quantity A.~p2 (u) appearing in 
it by M N 

P2 (u) =QI(u) {h ),_;m rp~m) + 2?In rp)nl}, (2. 7') 
m n 

and the expression A.~J { Afp} by 

M 

I {AW} = h i.;m 
m u n u 

(2.17') 

It follows from the expression for An (u) that 
the presence of inelastic collisions leads to a sharp. 
decrease in the distribution function when u > 1. 
Thus, with increase in the intensity of the electric 
field, the mean energy of the electrons at first in­
creases rapidly and then, beginning with some 
value E = E ( N 0 ) (corresponding to A.~ o ~ 1 ) , 
it remains practically constant until values are 

*Similar simplifications can be carried out also in the 
case of an intermediate value of ui. However, inasmuch as the 
resulting formulas are very cumbersome, we shall not write 
them out. 

tl~(u) u 
(8 

1,5 

reached, for which the energy drawn from the 
field per unit time is comparable with the losses 
due to excitation and ionization (A.t ~ 1 ), after 
which it again begins to increase. 

The formulas given above ~re valid, in general, 
for all q > 0. However, the greatest interest at­
taches to the case q = 1/ 2 , inasmuch as the function 
Vq coincides in this case (with accuracy up to 
some constant) with the excellently tabulated 
Airy functions, 6 which simplifies appreciably the 
use of the formulas. In the same way, the case 
q = 1h agrees well with the actual course of the 
cross section close to the threshold for excitation 
and ionization. 7 · 

By way of illustration we have plotted the func­
tion v2f0 (v) for the case in which the frequency 
of elastic collisions does not depend on the veloc­
ity: 

Cfla=l, Cfle=u(u-1)/(U2 -/-u~), 7;e=2u0va, 0=5·10-4 , 

u0 = 5, ~2 = 0, T = 300° K. 

The dashed curves correspond to distribution 
functions computed without consideration of in­
elastic collisions, the solid curves, with consid­
eration of losses by excitation. 

In conclusion, it should be noted that although 
the method of solution used here is valid, strictly 
speaking, only for the condition (2.15), an analysis 
shows that the expressions obtained for A (u) re­
main valid up to values a ~ 1, which corresponds 
to quite large values of E/p. 

3. DISTRIBUTION FUNCTION IN AN ALTER­
NATING ELECTRIC FIELD 

In previous section we found an expression for 
the electron distribution function in electric and 
magnetic fields that were constant in time. The 
results are easily generalized to the case of an 
alternating electric field. We assume, for sim-
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plicity, that E (t) = E0 cos wt. We then have in 
place of (1.9) and (1'.11): 

ilfo=_i_~va{ov [f + kToilfoJ_r(l)ft_S(fo)} (3.1) 
ill v2 iJv a _ o me v iJv 3 v ' 

iJf, -+- v f + [Q xf ] =- :rJ!.2 ilfo (3.2) 
i)t a l l v iJv ' 

where "Y ( t) = 'Yo cos wt, and S (f) is determined 
by (1.10) as before. 

Before undertaking the solution of these equa­
tions, we note that in a variable field the mean 
energy of the electrons changes only as a result 
of a change in the external electric field. There­
fore, depending on the ratio between the character­
istic time TE "' 1/ w of change in the field and the 
time T of the relaxation of the energy of the elec­
trons, we can segregate the cases of slowly 
( wT « 1 ) and rapidly ( WT » 1 ) changing fields. 
In the first case (quasi -stationary), the energy 
distribution is established in a time much shorter 
than 1/ w and thus the stationary solution is valid 
provided we replace y in it by y(t ). In the 
second case the mean energy of the electrons does 
not succeed in changing within the time "' 1/ w and, 
consequently, the isotropic part of the distribution 
function f0 (v) should not, in first approximation, 
depend on the time. Consequently, we can solve 
the set of equations (3.1) and (3.2) by successive 
approximation, expanding f0 and f1 in positive 
(for WT « 1) or negative (for WT » 1) powers 
of the parameter WT. A logical exposition of this 
method, for the case in which we can neglect the 
inelastic collisions [ S (f) = 0 ] , has been given by 
A. V. Gurevich.8 In the presence of inelastic col­
lisions, the problem is somewhat complicated, in­
asmuch as for S (f) ;.; 0 it is no longer possible 
to introduce a single parameter independent of the 
value of the applied electric field capable of char­
acterizing the rate of establishment of the symmet­
ric part of the distribution function. Actually, in 
weak fields, when the inelastic collisions do not 
play an important role, the relaxation time is de­
termined essentially by the elastic interaction and 
T "' 1/ ova. With increasing electric field, the fre­
quency of the inelastic collisions increases, and 
the inelastic interaction begins to play a decisive 
role, i.e., the relaxation time decreases. How­
ever, in spite of this indeterminacy in the choice 
of T, we can nevertheless evaluate the lower 
( Tt) and upper ( T2 ) bounds of T; thus, for fre­
quencies w « T21 and w » 1/T1, we apply the 
method of successive approximations as before, 
expanding f0 and f1 in powers of the parameter 
wT2 (for wT2 « 1) or (wTt)-1 (for wT1 » 1). 
Solution of these equations in the case of inter­
mediate frequencies 1/T1 > w > 1/T2 entails great 

mathematical difficulty and will not be considered 
here. 

1. Let wT2 « 1. Then the equations for the 
functions of first approximation, f~0 and ff0 , 

are obtained from (3.1) and (3.2) by discarding 
the time derivatives, after which we get for f~O: 

ov rf<ll + kTo ilfi,ll J + a. (t) r (I) iJf~l) - s (f~l)) =, 0 
a L o mv iJv 3v av iJv v ' 

where 

r (l)+[r (l)xQ];va + n (Qy (1))/v~, 
ex, (t) = . 

1 + fl2 :v~ 
It is easy to see that this equation is identical with 
Eq. (1.12), the solution of which was obtained above. 
An estimate of next higher approximations shows 
that the parameter T2 is equal, in order of mag­
nitude, to 1/ ova. where va is the average fre­
quency of elastic collisions of the electron with 
the atoms of the gas. 

Thus, for w/6va « 1, 

f~1) (v, t) = C (t) foo (u, t) A (u, t) (3.3) 

[with u = u (v)), where the function C (t) is de­
termined from the normalization condition, and the 
expressions for f00 (u, t) and A (u, t) are given 
by Eqs. (1.18), (2.16), and (2.18), in which the quan­
tity y has been replaced by y (t) = y~ cos2 wt. 

2. For wT1 » 1, the equations of first approxi­
mation give 
iJf(l) 
_o_ = 0 f(l) = 
iJt ' l 

1 ilf61l (Yo (va + ioo) 2 +(va+ ioo) [r0xOJ+fl(Qy0) iwt} 
----Rei e . 

v iJv \ (va + 100) [(va + ioo)2 + !:.!2] 

(3.4) 

Proceeding to the second approximation, f~2 ), and 
bearing in mind that. f~2 ) is bounded as t _.... oo, 

we find an equation for f~1> as a function of v: 

[ 
. kT0 ilf~l) J TN iJf~l) S ([~1 )) 

ov f<ll-r--- +--~--=0 
a o mv iJv 6v av iJv v ' 

(3.5) 

where 

(3.6) 

Comparing (3.5) with (1.12), we find that they 
coincide if y . 01 in ( 1.12) is replaced by Yoili /2. 
Thus, as has already been pointed out, the iso­
tropic part of the distribution function does not 
depend in first approximation on the time, and is 
equal to 

[6ll (v) = const · f00 (u) A (u), (3. 7) 

where f00 (u) and A (u) are determined, as above, 
by Eqs. (1.18), (2.16), and (2.18), in which y2 is 
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replaced by 11¢"/2 and the function p. (u) [see 
Eq. (1.18)] is replaced by 

~(u) = (6kT0oY'~i"(~m)cp; -+- f(v), v = v(u). (3.8) 

By computing the higher approximations, we find 
that the solution (3. 7) is valid only' for frequencies 
w satisfying the inequality 

(3.9) 

The author thanks M. S. Rabinovich for his in­
terest in the research. 
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