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A microscopic quantum theory of dispersion of electromagnetic waves in molecular crys
tals is developed. An expression is derived for the index of refraction due to the contribu
tion of the excited states of the electrons. Interaction between exciton states and the field 
is considered without the use of perturbation theory. 

INTRODUCTION 

A microscopic quantum theory of dispersion of 
electromagnetic waves in isotropic, condensed 
media was developed by Fano.1 In contrast to 
earlier work, 2 the oscillator strengths of electro
magnetic transitions were not considered to be 
small in the work of Fano. Certain interest at
taches to a generalization of the results obtained 
by Fano and to an analysis of the dispersion of 
electromagnetic waves in crystals of arbitrary 
symmetry. 

A microscopic theory of dispersion, within 
the framework of classical physics, was devel
oped by Born and Ewald.3 

In the present paper we develop a microscopic 
quantum theory of the dispersion of electromag
netic waves for a specific model of a molecular 
crystal. However, the method of consideration 
can be used for any crystal. 

The vibrations of the nucleus were not taken 
into account in this analysis. Consequently, the 
problem of the complex index of refraction should 
be considered separately. 

1. TRANSITION TO THE REPRESENTATION OF 
SECOND QUANTIZATION 

In the problem considered here of the interac
tion of the electromagnetic field with the electrons 
of a crystal, it is useful to employ a Coulomb gauge 
for the vector potential and thus assume that the 
vector potential of the microscopic field satisfies 
the condition (see reference 3): 

divA= 0. 

In this case, as is well known, the complete 
Hamiltonian of the system of the electrons and 
the field can be written in the form4 

H = H! + /i2 + thnt, 

(1) 

(2) 

where the Coulomb interaction of all charges mak-

ing up the crystal are included in H1, H2 is the 
Hamiltonian corresponding to the free electromag
netic field of the transverse photons, Hint is the 
operator of interaction between all charges and the 
transverse field of the photons. In a molecular 
crystal, the operator H1 can best be represented 
in the following form 

(3) 

In this expression Hna represents the Hamiltonian 
of an isolated molecule located at the position na 
(n is the unit lattice vector and a is the number 
of the molecule in the cell, a= 1, 2, ... , a), 
Vna,m,B is the operator of Coulomb interaction 
between the charges of the molecules na and m,B. 

We proceed to the representation of second quan
tization. For this purpose we choose as the set of 
basic functions the wave functions describing the 
stationary states of the isolated molecule. 

Let cloa be the wave function of the na mole
cule in a state f and not interacting with its sur
roundings. The value f = 0 corresponds to the 
ground state of the molecule. The function q{a 
satisfies the equation 

(4) 

where Tna is the set of coordinates of the elec
trons of the molecule na. To abbreviate the nota
tion, we denote the set of indices by the single in
dex s = (na ). 

We now introduce normalized and antisymme
trized products (neglecting the over lap integrals ) : 

~~ [(NcS)!J-'1' ~(- I)P P I1 rp1~('t5), (5) 

p '· ~~ 

where S is the number of electrons in a molecule. 
Each occupation number N s ( fs) is equal to zero 
or unity and indicates the state of the s-th mole-
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cule. Therefore, 

h N,(f,) = I, )~ N, (f ,) = N a. {6) 
fs s, f s 

Here N is the number of elementary cells in the 
basic volume and a is the number of molecules 
in the elementary cell. We can represent the wave 
function, which depends on the variables { Ts}, 
in the following form: 

'{" (-rl, · · · • "No)= S C { ... N, (f,) ... ) 
... N s<fs) ··· 

(7) 

Here C ( ... Ns (fs) ... ) is the wave function of 
the electrons in the second-quantization represen
tation. Let the additive operator 

(8) 

and each of the operators Us act only on the vari
able Ts. Then, if we neglect the exchange of elec
trons which belong to different molecules, the 
matrix element is 

where 

IU · } ' 
\ f J P ... N,(f s ) ... , .. :Nslfs ) ... 

=Np(fp)N~(fp') IT o[N,,{f,J-N:.<ts,)J. 
fst> Ste!=P 

Since we shall be interested below in the ex
cited states of a crystal, which correspond to a 
completely determined - say the f-th - excited 
state in the isolated molecule, we shall assume 
that fs takes on only two values, fs = 0 or f. 
Then, if fp ~ fp, 

N 11 ({ 11) N~ (/~) =:~· N P (fp) N;, ({~) o [N~(f~)- N P (f~)- I J 

xo[N~(fp)-Np(fp)+ I), 

(9) 

where 6 ( x) = 1 if x = 0, and 6 ( x) = 0 if x ~ 0. 
Now if fp ~ fp, 

N P (f p) N~ (f p) = N P (f p) N~ (f p) 

X o[N~(fp)- Np(fp)) o [N~(f~)-Np(f~)]. 
Therefore, for arbitrary fp and fp, 

{at~tp) ... X,(fs) ... ,N~(f,) ... ~~ Np(fp)N~(f~) IT o[N:{f.)-N.{f,) 
s, f s 

Moreover, since 

N' (f') = o[N' (f')-1] 
p p p p ' 

we conclude that 

= 0 [N p (f p)- 1] 0 [N p {f~)- 0 (fp- f~)l IT 3[ N:U .) 
s, fs 

- N, {f.)+ o (f,- f p)- o (f,- f~)]. 

Thus the operator afpfp can be represented as 

the product of two operators 

which are defined as follows: 

(10) 

brPC ( ... N s (f,) ... ) = o [N P (f p)] C ( ... N s (f,) + o (f s-f p) ... ), 

btpC ( ... N, (f,) ... ) 

= o[Np (fp)-l]C( ... N,(f,)-o(f,-fpL.). (11) 

It is easy to. show that 

afptpC( ... N,(f.) ... ) = Np(fp)C( ... N,(f.) ... ), 

i.e., that 

b,:bfp = Np(fp). 

On the other hand, 

brpbt; = 1- Np (fp). 

Thus, 

brpb;p + br>tp = I. 

Since the operators bfp• bfp and bfp• bfp act 
on different variables for fp :J fp, the following 
commutation rules hold: 

bri;·- b+1, b1P = o. 
I' p 

The operators with different p commute in all 
combinations. 

Thus the operators bfp are neither Fermi 
nor Bose operators (they are the so-called Pauli 
operators). Making use <;>f (9) and (10) we find 
that 

For an operator of the binary type 

U2 = S Upp.('r:p, "p,) 
P+P• 

we can in similar fashion establish the following 
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expression in the second-quantization representa
tion: 

Here 

U (f f · f'f' )= lmfr•m1P:U m1Prn 1P•d-r d-r pp, p p,. p p, ~ Tp T Pt PPtTp Tp, p p, 

- exchange terms (14) 

We now write down (in the second-quantization 
representation) the operator Hi. Making use of 
Eqs. (12) and (13), we find that 

' ""' fs 1 ""' ' ' + ' + H 1 = LJ Es Ns (f.) + 2 LJ Vss' (f sfs,; f sf • .) bts btsbfs, bt;, 
s, fs s+sJ 

(f •• '···!~.!~,) 

= If<~) + if<fl + fi<il, 

where 

fi<~l = ~E!•N.(f.)+~ ~ Vss,(fsfs,; fsfs,)N.(f.)N.,(f • .). 
s,f5 s+st 

<fs,fs,) 

if<fl = ~ ~ Vss, (Of; fO) [b;obstb;,jbs,o+ b;,obs,fb;tbsol. 
S<foSt 

We shall consider in what follows such excited 
states of the crystal which, for Vssi ____. 0, corre
spond to a number of excited molecules which is 
small in comparison with the number N. There
fore, we shall neglect in the Hamiltonian H~0 > the 
components that are quadratic relative to Ns (f). 

In this approximation (neglecting the interac
tion of the excitons ) , 

if<~l =Eo+ LJ Ns (f) {(E{- E~) 
s 

+ ~·[V •• ,(Of, Of)-Vss,(OO, 00)1}. 
s, 

where 

Eo= 2JE~ + ~ LJ v •• ,(OO, 00). 
S S<f:St 

We now introduce the operators 

(16) 

Then 

= Ns (f)- Ns (0) Ns (f)= N.(f), 

since 

Ns (0) + N.(f) = 1. 

Further, 

B.,s;, - B;tBst = N s (0) [ 1 - N s (f)] 

- Ns(f) [1- N.(O)] = 1-2Ns(f). 

In the states under examination, the mean value is 
Ns (f)« 1. Therefore, we can assume approxi
mately that 

(17) 

Since, for s -;r. si, the operators Bsf, B;f and 
Bsif' B;if commute with one another, we conclude 
that these operators are approximately operators 
of the Bose type. Thus, using (15) and (16), we 
obtain the following expression for the operator 
Hi: 

' 'V { f 0 'l' H1 =Eo+ ..:::.J (Es- Es) + LJ lVss, (Of, Of) 
s s, 

} + ""' + - V ss, (00, 00)] BstBst + ..:::.J V •• , (Of, Of) BstBs,t 
S"Fs. 

(18) 

To determine the elementary excitations corre
sponding to the Hamiltonian Hi, it is necessary 
to diagonalize the quadratic form (18). As Tyabli
kov has shown, a quadratic form of the type (18) 
is diagonalized as the result of a transformation 
to the new Bose-operators Bp and Bp (the 
method of Tyablikov is given in detail in the book 
of Bogolyubov5 ): 

p 

where the quantities Usp and Vsp entering into 
Eq. (19) are determined as the solutions of the 
equations 

Eu. = ~ [o •• ,6 + (1- a ••• ) v •• , (Of, Of)] Us, 
•• 

+ LJ ( 1 - o •• .) v •• , (OO, ff) v.,, 

- EV5= LJ (Oss,L\ + ( 1 - Oss1 ) Vss, (Of, Of)] V 5, 

s 1 

+~(I- 0551) Vss1 (00, ff) Us,. (20) 
s, 

The possible values of E are determined from 
the condition of the existence of nontrivial solu
tions for the set of equations (20), where 

_ I o ""'' 6 = (Es- Es) + LJ lVss1 (Of, Of) - Vss, (00, 00)]. 
s, 

The solutions of Eq. (20) should be chosen to 
satisfy the following normalization conditions 
(see reference 5): 
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(21) 

Recalling now that s = (na ), we shall seek solu
tions of the system (20) in the following form: 

(22) 

Substituting (22) in (20), we conclude that ua and 
v a satisfy a set of 2u equations 

(E- ~) ua = L} r~~ (k) uil+ ~r~J (k) ViJ, 
~ il 

- (£ + ~) Va = L} r~1J (k) ViJ + ~ r~2d (k) UiJ, (23) 
il il 

where 

r~1J (k)= h Vna, mil (Of, Of) exp {ik (rmil- rna)}, 
m 

r~2~ (k)= h v na, mil (00, ff) exp {ik (rmil- fna)}. (23a) 
m 

Equating the determinant of the set of equations 
(22) to zero, we obtain an equation for E. In the 
general case, for arbitrary k, an equation of 
order u is obtained for the quantity E2. This 
equation determines u positive roots of EJ.I. (k) 
(JJ.=1,2, ... ,u). 

We consider, as an example, a crystal with a 
single molecule in the elementary cell ( u = 1 ) . 
In this case, we find that 

E (k) = {I~ + r<l) (kJF- rr<2) (k)J2}•;,_ 

In those cases in which t::. » r <2> ( k), 

E (k) ~ ~ + r<1) (k)- rr<2) (k)J 2;2~. (24) 

In the theory, where the Heitler-London method is 
used (which is equivalent to carrying out the diag
onalization of the quadratic form (18) under the 
additional condition 

see reference 6), the last term in (24) is ab
sent. The value of the energy (24), as expected, 
turns out to be smaller than the value obtained 
with the use of the additional condition. However, 
this decrease is unimportant, since the ratio 
jr<2>(k)l/t::. inmolecularcrystals,where t::. is 
of the order of several electron volts, is at most 
less than 0.1.* The operator H1 is represented 
by the new Bose-operators in the following form 
(see reference 5): 

Ht=Eo- L}Ef.<(k)fvo:(k, p.)!2 +L}E .. (k)BZf.<BkJ.L· (25) 
a,kf.< k!L 

*The difference between the expression E (k) and the cor
responding value obtained by the Heitler-London method can 
become substantial when the width of the forbidden zone is of 
the same order as that of the allowed zone. 

Thus EJ.I.(k) is the energy of the elementary 
excitation (JJ., k). The second term in (25), which 
is absent when the Heitler-London method is used, 
is readily shown to be a small correction to the 
energy E0 ~ [r<2>]2/t::.. 

2. DISPERSION OF ELECTROMAGNETIC WAVES 
IN MOLECULAR CRYSTALS 

The Hamiltonian of transverse photons4 has the 
form 

(26) 

In this expression, q is the wave vector, j ( = 1 
or 2) is the number of the transverse polariza
tion, a<iJ and ~ are the Bose operators of an
nihilation and creation of transverse photons ( qj ) . 
The interaction operator in the nonrelativistic ap
proximation can be represented in the following 
form: 

(27) 

where Jna is the operator of the total momentum 
of the electrons of the molecule (na ). 

According to reference 4, the vector potential 
operator is 

We choose the wave functions of the isolated mole
cules to be real and assume that the isolated mole
cules are not in any of the stationary states and do 
not possess dipole moments. 

Substituting Eq. (28) in (27), we get 

H~t=-~ ~ V2rrt.;Vqc {aq/ [:~~I iqrna (lq)na)] 
qJ na 

+ + ['V -iqr ( • ]} aq/ L.J e na lqt Jna) . 
na 

Let us consider the operator 

R, - 'V e±tqrna (I . p ) 
± - L.J Ql ncx , 

n~ 

(29) 

where Pna is the dipole-moment operator of the 
molecule (na ). In the second-quantization repre
sentation, 

R± = l]e±iqrna (lqtP~~)(b:a.obna,f + bna,ob"to:, ,), 
na 

or, transforming to the Bose operators BqJJ., and 
neglecting tra.llsfer processes, we conclude that 
the operator R± is given by 
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A v-"i:l{"i:l of } + R±= NLJ LJ(lq1Pa.)[ua.(qp,)-f-v11 (QfL)] (B+q!L+B±q~-'}. 

We introduce the operator 

j± = ~ e±iqrDCl (lqjJne<)• 
DCl 

This operator is defined in the following way: 

J± = (imjlie)(H/?.±- k±fll)· 

Therefore, making use of Eq. (25), we find that 

J±= ~: ~E~-'(q){~(lqiP~)[ua.(qfL) 
!L Cl 

+ Va. (qfL)l} (B+q<J.- B:q.,_). 

Thus, we finally obtain the following expression 
for the operator Hfnt: 

Hfnt= 2J T(j, q, t.L)[aqi(B-q,!L-B~.~-<) 
"· q, j 

where 

T(j, q, fL) = iJf2rcNfqcVIi L)(Lq.iP~1) 

(30) 

(30a) 

Equations (30) and (30a) were obtained for crystals 
possessing a center of inversion. In such crystals 
the values of ua and v a can be chosen such that 
the conditions 

U11 (q, [L} = Ua. (- q, [.L) = u: (q, [L), 

V" (q, [L) = Va. (---'- q, p.) = v: (q, [.L). 

are satisfied. In a ,similar way, we find that, 
with accuracy to within an unimportant constant 
term: 

II nro~ '\""' 1 (2 + + + + + + ) Hint= T ..::.J qc aq1aqi aqp-qJ aqi aq1a_qi . 
Q/ 

(31) 

Here w0 is the frequency of the plasma oscillations 

(r)~ :~:.; 4rre2 N 1 aS I m, 

where N1 = N/V. 
Combining Eqs. (30}, (31), (26), and (25}, and 

returning to the Hamiltonian of the entire system 
(2), we conclude that this Hamiltonian is given by 

H = E0 - h E~-< (q, [J.} IVa: (q, (J.) ~~ + :2; Ell (q) B~!LBqr• 
ex:, :..t, q q, !l 

qj v .. q, j 

(32) 

The problem of the determination of the elemen
tary excitations that characterize the entire system 
of electrons and the field is equivalent to the prob
lem of the diagonalizati,on of the Hamiltonian (32). 
From these considerations it follows that the only 
Bose operators involved are those which corre
spond to the wave vectors q and - q. Therefore, 
for the diagonalization of Eq. (32), it is sufficient 
to examine the quadratic form 

H~ = ~E~-' (q) (B~f.lBq~-< + B~q!LB-q~-<) 

+ ~ liqc ( a~1aq1 + a~q;a-q1) 
! 

( 
w~ \ nro~ 1 + 

X I + 2q•c• ) + -2- ~ qc ( aqP-<Ji + aqia-qi) 

- ~ T (j, q, fL) [(aq/ +a~ qi) (B_qf.l- B~!l) 
l'i 

(33) 

The quadratic form (33) can be diagonalized with 
the aid of the method of Tyablikov, already used in 
Sec. 1. Following this method, we transform to 
new Bose operators ~P and ~~: 

Bq~-' = ~ [Epuq~-< (p) + ~t v~!l (p)], 

aq1 = ~ [~puqi (p) + ~; v;1 (p)], (34) 
p 

where the quantities u. and v satisfy the follow
ing set of equations: 

[£~-' (q)- it) Uqr• + h T (j, q, [L) (Uqj + V_q;). = 0, 
j 

[E(.< (q) +it) V-q!L- h T (j, q, [L) (Uqj + V_qj) = 0, 
j 

(liqc- it) Uqj- ~ T (j, q, [L) (uq~-<- V_q.,_) 

1iro2 
+ -2 ° (Uqj + V qi) = 0, qc -

( n.qc + CC) v _q; - h T (j, q, fL) ( uq!L - v _q~-') 
!l 

nw2 

-L - 0 (u · + v 1) = 0. 
1 2qc q1 _q 

(35) 

Comparing the first equation in this set with the 
second, and the third with the fourth, we find that 

Up to now we have considered only one of the 
excited states of the molecules. However, it is 
possible to take all the excited states into consid
eration. For this purpose, it suffi-ces to consider 
the index ll as a compound index characterizing 
not only the number of exciton zones, but also the 
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excitation level of the molecule corresponding to 
this zone. In this approximation, u and v are 
determined as before from the set of equations 
(35). However, the index 11- now runs over an 
infinite set of values. 

Such consideration of all the excited states of 
the molecules of the crystal is carried out in the 
spirit of the correspondence principle, according 
to which, in the dipole approximation, the optical 
behavior of the molecule is equivalent to the be
havior of a corresponding set of oscillators. It 
should be noted that an account of all the excited 
states of the molecule is necessary only for ob
taining the correct asymptotic behavior of n2 ( w) 

when w - 0 and w - oo • No such account is 
necessary if the study is limited to the dependence 
of n2 ( w) in the region of frequencies close to one 
of the absorption bands in the molecule. 

It follows from the system of equations (35) that 
the only states that interact with the transverse 
electromagnetic field are those for which T· ( j, q, 11- ) 

>" 0. Expressing the quantity uQJ..L for these states 
in terms of Uqj with the help of the first of Eqs. 
(35), and substituting the resultant expression in 
the third of Eqs. (35), we get a system of two linear 
equations for the quantities Uqj. Setting the deter
minant of this equation equal to zero, we obtain an 
involved equation for the energy of the elementary 
excitation e in the system of electron plus field. 
This equation has the following form: 

(!2q2c2 + n2w~ _ ~)2 _ (hzqzc2 + t,zw~- (82)(1:11 +1:22 ) 

+Enl:22- l:121;21 =0, 

where 

" . . 1/ftqcElL (q) 
E,t = '£1, = .LJ T (t, q, p.) T (J, q, p.) 2 • 

[A. <£2-£[L(q) 

(36) 

(37) 

Equation (36) does not determine the energy of ele
mentary excitations without dipole moments [for 
which 18 =Ell (q)]. Moreover, Eq. (36) does not 
determine the longitudinal elementary excitations. 
For consideration of the latter, it is necessary to 
set the determinant of the system of equations for 
the quantities uQJ..L and llqj equal to zero. This 
set of equations is obtained from (32) after elimi
nation of the quantities v -QJ..L and v -qj. 

The index of refraction of light waves n2 = 
n2q2c2/C82 can be obtained from Eq. (33): 

(38) 

In this equation and in what follows, the notation 

w==e/h, s==q/q 

is employed. 
Equation (38) appears to have a pole at w = 0. 

We shall show that the c_omponents "' ;g-2 in Eq. 
(38) vanish identically. Actually, let us consider 
the two operators 

n<X O<X 

where Pna is the operator of the dipole moment 
of the na -th molecule. We introduce x and y 
as two orthogonal coordinates. The operators 
frx and Ily satisfy the following commutation 
relations: 

. • . e• 
Ilxll •. - Iluf1x = -tli m NoSoxu· (39) 

In the second-quantization representation 

or, transforming to the Bose operators BQJ..L 
( BQJ..L I q=o = Bs11-), 

Ily = VN ~{ P~y [Ucx (sp.) + Va (s:J.)l} (Bs[L + s:[L). (40) 

The operator llx is determined in the following 
fashion: 

Inserting Eq. (25) in this relation, we find that 
· iVN \.l 

Ilx = -n_-LJ ElL (s) 
[A. 

X{~ P';Jy (ucx (sp.) + Vex (sp.)J} (BslL- B~). (41) 

Making use of Eqs. (39), (40), and (41) we obtain 
the desired summation rule: 

2 2J ElL (s) {2J P~~ (u .. (sp.) + Vex (S:J.)l} 
[A. <X 

{ \.' nf } 2 e2 S" X .LP!3u [Ufl (s:,~o) + Vf3 (S(J.)] = h m (J Uxy· 
ll 

(42) 

If we introduce the notation 

C1 

we can rewrite Eq. (42) somewhat differently: 

2 ~ElL (s) I P0lL (s) :2 cos !Jly (:.1.s) cos 'Yx (!J.S) = li2 ~: cSoxy· (43) 
[A. 

Since 

E; ( q) / (83 (3'2- E~ ( q)) ==I 1[(82- E~ ( q)]- I / i£2' 

1 '£ RnN1 \.1 E ( ) p ( 2 ( ) ( ) ;B2 jj, = --~ ..:.J f.< Q I Oi.< Q): COSy/ !l.Q COSyj, (J·Q 
i.L 
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Here j, h = 1, 2, and cpj (J.tq) is the angle between 
the vectors P0J.! ( q) and lqj. 

Making use of the summation rule (43), we find 
that the substitution of the resultant expression for 
~ jj1 in Eq. (38) eliminates the terms proportional 

to f£-2. We can write the following,as the final 
equation for the quantities n1, 2 ( w ), with accuracy 
to small terms ""'(.d/A)2: 

(44) 

where 

FJ.! is the oscillator strength corresponding to the 
level !-!· This quantity is essentially independent 
of s. 

It is easy to show that as w - oo , 

n~.2 (w, s)---'>- I- w~ I w2 .. 

If w ~ nf, i.e., if the frequency is close to one 
of the absorption bands in the isolated molecule, 
one can separate in the sums over J.! the reso
nance components that play the dominant role. 

Let us consider some special cases. 
1. The elementary cell of the crystal contains 

a single molecule ( u = 1). In this case, 

2 w~F (s) . 2 ( 
n1 (w, s) =" s (w, s)- (1)2 _ 02 (q) sm cp s), 

n~ (w, s) = s (w, s), 

where the function € ( w, s ) depends weakly on 
the frequency w and the direction s. 

2. The crystal possesses cubic symmetry. In 
this case, the f-th molecular term corresponds 
to a twofold degenerate exciton band of transverse 
waves (J.t = 1, 2; Po~-t<s) 1 s, I Pot I =I Po2l, Pot 
1 P 02 ) and to an exciton band of longitudinal waves, 
J.t = 3, P 03 ll s. In this case, EJ.t depends only on 
the absolute value q of the vector q and, conse
quently, 

n; (w, s) = n~ (w, s) = I - + ~ (wgF ~-'/ (w2- ,Q~ (q))]. 
li 

The factor % stands before the sum because 
each component appears twice in the sum over J.t 
owing to the twofold degeneracy of the terms. 
Close to one of the resonances, 

ni = n~ = s (w)- w~F2! [w2- ,Q2 (q)], 

where the function € ( w ) dependes weakly on the 
frequency. 

3. Let us now consider a crystal containing 
two molecules in the elementary cell. Molecular 
crystals of this group are naphthalene, anthracene 
and a number of others. In such crystals, each 
allowed molecular term corresponds to two allowed 
crystalline terms (J.t = 1, 2 ), for which the vectors 
P 0J.t are orthogonal (see reference 5). If the wave 
vector q is orthogonal to the plane of the vectors 
P 0J.t, the general expression for the indices of re
fraction is materially simplified in the frequency 
region close to the frequencies of the doublet. 

In this case we find from the general expression 
(44) that 

ni (w) = s (w)- w~F1 I (w2 - ni (q)], 

n; (w) = s (w) -- w~F2/[w2-Q~(q)l. 

Account of the spatial dispersion in the expres
sions obtained above can be carried out similarly 
to what was done in references 7 - 9. However, it 
must be noted that in inactive crystals the role of 
new effects, which arise upon consideration of 
spatial dispersion, is evidently small (in spite 
of the estimates given in reference 8 ). 

In conclusion, the author thanks V. L. Ginzburg 
for his valuable advice and discussion of the work, 
and also A. S. Davydov and V. P. Silin for useful 
discussions. 
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