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The motion of a completely ionized plasma (collisions being neglected) along a narrow 
magnetic tube of an axially symmetrical magnetic field is considered by means of the 
kinetic equation. The equation is solved under the assumption of sufficiently slow varia
tion of the magnetic field. Canonical variables are chosen as the independent variables 
of the distribution function. 

WE consider a completely ionized plasma with
out collisions, contained in a narrow magnetic tube 
of an axially magnetic field (the axis of the tube 
coincides with the axis of symmetry of the field). 
The motion of the charge along the tube is de
scribed by the following equations1 (in the Hamil
tonian form ) 

V 11 = - o:'ft I ox, x = a:n 1 av 11 , 

flt (J .l• VI!, x, t) = 1/2 [V2n + J .lfl (~, {-L)], 

h =Vi I H (x, p.) = canst. (1) 

Here VJI and V1 are the components of the ve
locity of the charge along and perpendicular to the 
magnetic tube, and J.1. is a time dependent param
eter. 

We carry out a canonic~! transformation of the 
variables x, VJI to the angle variable cp and the 
action variable J 11 : 

V 11 =oS(Jt. J 11 , x, t)lox, ~=oS(h, J 11 , x, t)loJu. 

:lt'=:7C(J_]_, J 11 , t)-r-oS(J_]_, J 11 , x, t)lot. (2) 

The generating function* · S and the action variable 
J11 are defined by the equations 

S = ~ [2:'7t- J .lH (x. {-L))''• dx, 

J 11 = in ~ [2:'7t- J .lH (x, p.)]''• dx, (3) 

where the integration is carried out along the tra
jectory of the 'charge for a fixed value of the param
eter J.l.. In the variables cp and J11, the system (1) 

*Generally speaking, in the case of an arbitrary depend
ence of 11 on the time, the generating function is equal to 
S + S, (J .l' J 11 , /1), where S, is a certain function (see reference 
2). However, in our approximation, S, can be omitted. 

takes the form 

j n = oh I a~. ~ = w - oh I i}J I' 

h ==- -as; at, w - oflt 1 aJ 11 • (4) 

The system (4) corresponds to the Liouville equa
tion for the distribution function* F 

We assume that the magnetic field changes 
slowly with time 

W 1oH I of~< Vi>'" I a, 

(5) 

(6) 

where a is a distance of the order of the size of 
the inhomogeneity of the magnetic field along the 
magnetic tube. In this case we can look for a so
lution of Eq. (5) in the form of an expansion in 
powers of the small quantity 1/ w: 

F = p(O) + }_-lp(l) + ... ' 
< p<n >~" = ... = 0, (7) 

where the index cp next to the averaging symbol 
denotes averaging over the angle variable cp. Sub
stitution of (7) in (5) gives 

ap<o) 
~=0, 

p<n = - _1_ ap<o) (h- < h >\')>· (8) 
"'1 iJJII 

Thus, limiting ourselves to terms proportional to 

*As is explained below, in our case no sufficiently slow 
change of the magnetic field of the space charge is produced 
by the motion of the plasma. Therefore there is no necessity 
of making a distinction between the distribution iunctions of 
the electrons and ions. 
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1/w, we obtain the following solution of Eq. (5): 

F(JJ., Jll, cp, t)=F.(o>(JJ., Jll) 

1 iJf(O) 
--- (h- (h )rp). 

w iJJ II 
(9) 

We shall give another derivation of Eq. (9). For 
this purpose we note that under conditions (6), the 
system (4) is a system with a rapidly changing 
phase.3 Its approximate solution has the form 

dJ 11 ldt = 0. (10) 

If at the initial moment the distribution function is 
equal to F<0>(J1 , Jll ), then at the instant t we 
have 

(0) -
F(h,J 1 ,rp,t)=F (J.1_,Jo) 

=::; p(O) (J .1.• J II)- w-1 (aF(O) I aJ II) (h- < h )rp). (11) 

According to (10), the action variable itself, J11 
is not adiabatically invariant, but its average value 
J11 over the period of the unperturbed motion of 
the system (4) is (i.e., for J..L = const. ). As is 
evident from (11), the function F<O> in (9) can be 
set equal to the distribution function at the initial 
instant. 

Let us consider a specific example. We de
scribe the magnetic field in the form 

(12) 

and the distribution function at the initial instant 
as a Maxwell distribution 

p(o) = N 0 (rr8)-'1'exp [- (V3_ + V2.) / 8]. (13) 

According to Eq. (9), we get 

-•;, f 1 H (H" )'I• J F(x, V 11 , t) = N0 (~t8) 1- 29 !/ H Vux 

{ 1 ( Ho •;, [( H;, \ •;, Vi ·2 l} 
X exp - e H) H) <D (x, t) -!-- V II J , (14) 

where 

(15) 

Calculations of the moments from zeroth to third 
order in the velocity relative to (14) leads to the 
following relations: 

for X-+ 0, 

for x-> ± oc, 

<Vi> I <Vi>o = (HI Ho) <D, (V~1) / (V 2u )0 =(HI Hof', 

<Vi> I 2 <V11) = (HI Ti0)'1' <D > I (V 11) = - (7i I 4Ji) X, 

<ViV II> = <Vi> <VII), (V~I > = 3 (V~I > <V u ). (16) 

According to (16), as the magnetic field is in
creased the plasma is compressed to the region 
of its minimum value. The kinetic temperatures 
of the plasma increase. In this case the velocity 
distribution becomes anisotropic: the transverse 
temperature is greater than the longitudinal. The 
heat flow is equal to 0 and the compression of 
the plasma is adiabatic. 

In conclusion I take this opportunity to thank 
Professor Ya. P. Terletskil for the discussion 
of the research. 
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