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MANY laboratories have recently built elec­
tronic accumulating systems for energies of hun­
dreds of millions of electron volts, with the num­
ber of bunched electrons reaching N"' 1014• In 
the calculations, the forces of electromagnetic 
interaction of the electrons in the bunches are 
disregarded. In the present note we calculate 
approximately the effect of these forces on the 
phase motion of the electrons and obtain an es­
timate of the equilibrium angular dimensions of 
the bunch, determined by the interaction forces. 
We use in our calculations Eq. (3) below for the 
tangential forces of interaction in the bunch; this 
equation is correct if the angular dimensions of 
the bunch are 8 0 « 1 (reference 1). We do not 
take into account the screening of the electron in­
teraction by the walls of the chamber and by the 
magnet. This estimate is therefore valid only for 
sufficiently small bunches. For bunches whose 
dimensions are on the order of the transverse 
diameter of the chamber, the specific nature of 
the construction of the accelerator must be taken 
into account. The problem of the influence of the 
interaction forces on the motion of electrons in 
a synchrotron was first raised and examined by 
I. E. Tamm for a specific case (Report of the 
Physics Institute, U.S.S.R. Academy of Sciences, 
1948). 

For a circular orbit, limiting ourselves to the 
ultrarelativistic case y == E /mc2 » 1, we obtain, 
by using the usual derivation, a linearized phase 
equation in the form 

~·+Yi~+D.2~+ (1 -cn)aEs ]Wscoh+ cT,(~)] =0, (1) 

where lj! is the phase of the electron, measured 
from the phasing point lf!s, a is the radius of the 
stable orbit, and n is the decrement index of the 
magnetic field. The phasing point is determined 
from the condition 

2~ eV0 sin~s = Es + Wys + Ws coh• na 

where V0 is the amplitude of the resonator volt­
age, Es the energy of the stable electron, Wys = 

( 2e2c/3a2 ) y4 is the energy lost by a single elec­
tron to radiation, 

+co 
Wscoh =-c ~ f-r(~)r.p(~)d~~Ne2cfa•.&:/• (2) 

-co 

is the mean energy lost by a single electron to co­
herent radiation, and 

- {(3- 4n )WY'+ Es +-1- wscoh}. 
"'J- 1-n £ 5 £ 8 (1--n) E 5 

c2eV ,,, 
.Q2 - v = VoCOS't's• - 2n (1-n) a2 E5 ' 

The distribution of particles by phases, cp ( lf!), 
depends on the character of the phase motion and 
on the distribution of particles by parameters of 
this motion. As the phase motion proceeds, cp (I/!) 

will in general change. As a result, fT( lf!) will 
also change, making it difficult to obtain an exact 
solution of Eq. (1). We shall give below a qualita­
tive estimate of the solutions of (1), assuming 
cp ( lj!) to be specified and constant. In this case 
Eq. (1) describes dissipative motion in a well with 
a potential 

U (~) = ~ ~2 + (1 - ~) aEs [W scoh~- c<P (<jl)]. (4) 

We obtain from (2), by the mean-value theorem, 
W s coh = -efT( ¢1 ), where ¢1 is not an :_xtremal 
point. Consequently the sum W s coh + efT ( 1/!) 
vanishes in the region II/! I ~ 8 0 at least at two 
points, and is negative between these two points. 
The second term in (4) is therefore essentially a 
straight line with a positive slope, but must have 
a well in the region II/! I ~ 8 0• The edge .of the 
well lies near lj! = -80, and the ends of the bunch 
always project outside this well. The shape of the 
potential (4) depends on the ratio of the first and 
second terms near the point lf! = - tllo. This ratio 
is best characterized by the dimensionless par am­
eter 

- n•~o ~(~).&'!.. (5) 
P - cW5 coh/(1- n) a£5 2n Ne 0 

If p » 1, the first term in (4) predominates and 
the potential differs little from an ordinary parab­
ola. To the contrary, when p « 1, the second 
term predominates. In this case the potential has 
two minima, one in the front, in the region 1/! ::5 tllo 
and one in the rear, in the region lf! < - tllo; these 
are separated by a hump near the point 1/! =- 8o. 
The bunch is located essentially in the forward 
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well, but its ends always project beyond its limits. 
In the intermediate case p ,...., 1 we get a point of 
inflection instead of the rear well and the hump. 

It is easy to visualize qualitatively the varia­
tion of the dimensions of the bunch in the accumu­
lating system. First, as long as the bunch is large, 
p » 1 and the particles perform the ordinary 
damped oscillations in an almost-parabolic poten­
tial. The bunch becomes compressed, the potential 
(4) is deformed, and the oscillations become dis­
torted. If it becomes possible to compress the 
bunch in some manner so that p « 1, the potential 
will already have two minima. Thanks to the fact 
that the ends of the bunch project beyond the for­
ward potential wall, the bunch begins to overflow 
backwards and increases in size. Consequently, 
there should exist an equilibrium bunch, with angu­
lar dimensions of an order of magnitude deter­
mined by the condition p ,...., 1 or 

&0 ~ (2rcNe;aV)'f,, I> 1; (6) 

In one of the installations now being designed, 
N,...., 1014, V0 ,...., 105v, and a,...., 102 em (reference 2). 
It is assumed that the equilibrium angular dimen-
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To determine the p-p scattering matrix at goo 
it is necessary to perform five experiments. If 
we measure at this angle of the value of the cross 
section I, the coefficient of spin correlation Cnn, 
and the Wolfenstein parameters1 D, R, and A, 
then the amplitudes and phases of the components 
of the p -p scattering matrix can be determined 
from the relations 

b2 =I B 12/4/ =% (1- Cnn), 

c2 = 21 C 12/l = 1/ 4 (1 + Cnn + 2D), 

h2 = l H 12!21 = 1/4 (1 + Cnn- 2D), 

sin oc =- (R + A);2bC, cos 'OH =(A- R)!2bh, 

where B, C, and H are given by 

B =I B I ei'PB, C =I C I ei<5c+'PB>, H =I HI ei<5H+'PB>. 

sions of the bunch are determined by the swing of 
the phase oscillations due to quantum fluctuations 
of the radiation, and are small at these parameters. 
Inserting the numerical values in (6) we get J.0 "' 2. 
This means that the interaction forces cannot be 
neglected. However, the estimate (6) itself can no 
longer be applied. To determine the dimensions of 
the bunch under these conditions and to answer the 
question whether the phase stability is disturbed, 
it is necessary to perform the calculation with al­
lowance for the forces of interaction between the 
electrons without assuming the bunch to be small, 
and to take into account the interaction between the 
bunch and the walls of the chamber and the magnet. 

In conclusion, I express my sincere gratitude 
to Prof. M. S. Rabinovich for valuable advice. 

1 L. V. Iogansen and M. S. Rabinovich, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 37, 118 (1g5g), Soviet 
Phys. JETP this issue, p. 83. 

2 G. K. O'Neill, Stanford University Report, 
1g58. 
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The symbols used are the same as in Wolfen­
stein's paper.1 

Since the experimental data are incomplete, we 
can only estimate the region of possible values of 
the amplitudes. If we assume D (goo) = -0.75 ± 

0.15 for an energy of 140 Mev, which follows from 
an extrapolation of the data of Taylor, 2 then 0 :s b2 

:s 40%, 0 :s c2 :s 20%, and 75 :s h2 :s g5%. For 
315 Mev, an estimate was made by Wolfenstein. 3 

Combining the experimental data at energies of 
382 Mev4 and 415 Mev5 and referring them to 400 
Mev, we obtain b2 = ( 30 ± 4) %, c2 = (56 ± 5 ) %, 
and h2 = ( 14 ± 5) %. Using the value of the corre­
lation tensor Ckp = 0.63 ± 0.10, measured at goo 
and 382 Mev, 6 we can determine the phase differ­
ence oc- oH, which equals goo. For 635 Mev, 
as follows from reference 7, 0 :s b2 :s 24%, 76 :s 
c2 :s 100%, and 0 :s h2 :s 12%. From this we can 
determine the possible values of the correlation 
tensor Cnn and of the parameters R and A at 
635 Mev, namely 52 :s Cnn :s 100%, I R I :s 27%, 
and IAI:s21%. 

It follows from this estimate that in the energy 
range under consideration the principal contribu­
tion to the cross section is made by the triplet in­
teraction. Furthermore, the tensor-like triplet 
term h2 predominates in the lower interval, 


