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tial V, the solution u is inserted instead of the 
exact solution y. This procedure gives the well­
known Born approximation: 
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'"fjt = - "1i~ ~ V (r)JZ+'f, (kr) rdr. (7) 
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Applying this same procedure to Eqs. (1b) and 
(1c), we get the well-known Kapteyn integral3 

rJ[J.(rxt)Jv(rxt)¥=/~sin[~.~:t)/2]. 1-'=fov (8) 

0 ~· !-'=V. 

Finally, applying this procedure to Eqs. (1a) 
and (1c), where the solution for v is given by Eq. 
(6), and using Eq. (8), we get the Pais approxima­
tion for the phase shifts: 
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Pais obtained this formula by means of a varia­
tional principle. We see that one can obtain the 
approximate formulas of Born and Pais for the 
phase shifts by using a single kind of procedure. 

The examples considered below show the ac­
curacies of the Born and Pais approximations 

(9) 

(it must be emphasized that the Pais formula (9) 
is incorrect for the zeroth -order phase shift ) . 
For the Gauss potential V ( r) = - V 0 exp (- a 2r 2 ), 

Eqs. (7) and (9) give 

_ (l) _ 1rMVo (-- !!_)J (!!__) 
'Yjl Born - 'YJ 1 - 41i2a2 exp 2a2 l+'f, 2a2 • 

21 -i- 1 - 2'1) 11 r. r.MVo ( k2 \ ( k2 ) 
21 -i- 1- 4>Jz," 'YJI = 41i•a2 exp - 2a2ll+'f,-2~t ;rc ,2a2 . (10) 

Considering the scattering of a neutron by a 
proton (M is the mass of the proton) at 100 Mev, 
and choosing for the constants the values V 0 = 45 
Mev and a 2 = 0.266 x 1026 em - 2, we get the follow­
ing values of the phase shifts by the Pais method: 
111 = 0.534, 112 = 0.221, whereas the Born method 
gives 111 = 0.487 and 112 = 0.197. Since the sec­
ond Born approximation gives better results than 
the first, we shall compare the values obtained 
above for the phase shifts with the results of the 
second Born approximation, 4 111 = 0.552 and 112 = 
0.213. We see that the Pais method gives consid­
erably better results than the first Born approxi­
mation. 

For large values of l the phase shifts 111 
calculated by the Born and Pais methods approach 
each other, as can be seen from Eqs. (7) and (9). 
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IT has been shown in a previous paper1 that if in 
analogy with Einstein's theory of the gravitational 
field one describes the electromagnetic (vector) 
field as the curvature of an auxiliary "space" with 
the metric ds = Yi ctxi, then one can obtain a non­
linear Lagrangian of the electromagnetic field, 
which in the case of a static spherically symmet­
rical field leads to the potential 

tp = (efro V2)sinh (r0 V2;r), (1) 

This gives for the classical (unquantized) field 
mass of a stationary electron m 0 1 ~ m 0 /5, where 
m 0 is the experimental rest mass of the electron 
(the value mel~ m 0 /3 is erroneously given in 
reference 1 ) . 

To calculate the radiative (quantum) correc­
tion ~mq to the mass of the electron, caused by 
the interaction of the stationary electron with the 
photon and electron -positron backgrounds, we 
must first of all find the wave solution of the field 
equations corresponding to the nonlinear Lagrang-• 
ian in question. Since this is practically unfeasible 
because of the great mathematical difficulties, it 
is not without interest to try to give at least a pre­
liminary and approximate estimate of the size of 
~mq. The idea of the calculation is as follows. 

In the nonlinear theory under consideration, one 
gets in accordance with Eq. (1) for the energy of a 
stationary charge e situated in the field of another 
charge e, not the value E1 = ecp 1 = e 2/r, but in­
stead 
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If now we assume that this relation between the 
energies in the linear and nonlinear theories holds 
not only for the energy of the field of a stationary 
point charge, but in general for every electromag­
netic energy, and apply it to the energy of electro­
magnetic quanta, then 

(2) 

where w1 is the frequency in the linear theory, 
and w0 = m 0c2 /n is the critical frequency at which 
the quantum energy equals the rest energy of the 
particle with which the quantized field interacts. 

In view of the obviously preliminary nature of 
the present calculation, there is no point in carry­
ing out exact computations of .6.mq; for an approx­
imate quantitative estimate, it suffices to use the 
simplified formula from the first papers of Weiss­
kopf,2 according to which 

Making here the change indicated in Eq. (2) (it is 
clear that the change is to be made only in the ma­
trix elements and not in dN), we also change the 
intermediate limit of the integrations: instead of 
w0, we write 1)w0, choosing the factor 1J ~ 1 in 
such a way that the integrands have the same value 
at the place where they are joined. The substitu­
tion leads to the expression 

~ co 

D.m = _!!:_ m 2-.0 (\' ~ + 2 \ ___0!_L) a,= hec2 
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q ~7t 0 r £ .\sinhV2~ .\sinh 3J;'2~ ' 
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where 1J ~ 0.81. Numerical integration gives a 
value ~ 0.374 for the quantity in brackets, so 
that we have 2 x 21/ 2 x 0.374 ~ 1.06; therefore 
we get finally 

D.mq = (a,;2-r.) mo. 

We note that the final value of .6.mq is gotten 
just from the strong singularity of cp at the origin. 
This result cannot be given by nonlinear theories 
with a finite potential at the origin (the Born-Infeld 
type of theory). 
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SEVERAL recently-reported experimental inves­
tigations1- 4 are devoted to a study of paramagnetic 
rotation of the plane of polarization in the micro­
wave band, for the case when the preferred direc­
tion in the medium (the gyration direction) is 
perpendicular to the direction of the propagation 
of the incident wave. For several substances, 
critical relations were obtained for the angle of 
rotation of the plane of polarization, {3, as a func­
tion of the constant field H0• Curves of this type 
can be obtained also by other means without di­
rectly measuring the angle {3. In fact (see ref­
erences 1 and 6 ), starting with general consider­
ations, we can obtain the following expression for 
the angle of rotation of the plane of polarization 
per unit length of the paramagnet 

~ = - (rrw Ys ;c) (X~- X~l) sin 2a,, (1) 

where a is the angle between the constant (H0 ) 

and high frequency fields; xl and xfl are the 
imaginary parts of the magnetic susceptibility of 
the paramagnet for perpendicular and parallel 
fields. To explain the dependence of {3 on H0 

it is necessary to know the corresponding depend­
ences of the imaginary parts of the magnetic sus­
ceptibility, xl and x!l, on the field, and these 
are readily obtained by experiment. Certain re­
sults of such experiments are listed below. 

The apparatus used in the present investigation, 
with which we could obtain the dependence of x" 
on H0 for all angles a, was analogous to the ap­
paratus described by us earlier. 5 The only differ­
ence was, first, that in addition to being able to 
use a cylindrical cavity in the H011 mode we 
could also use a rectangular cavity in the H 102 

mode, and could thus reduce considerably the 
electromagnet gap, and second, that the gener­
ator portion of the apparatus was rigidly coupled 
to the measuring portion. This eliminated com­
pletely the possibility of contact error inherent 
in the rotating flange of the previous version of 
the apparatus. To vary the angle a, the entire 
apparatus was rotated as a unit. 

The experiments were performed at room tern-


