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'Yc as compared with the values obtained by the 
method of the Rome group1 (column 2 ) . 

With the exception of one shower, 5 the inelas
ticity factor is substantially smaller than 1. The 
error in the determination of 'Yc and K, arising 
out of the fluctuation of the angular distribution of 
particles can be taken into account analogously to 
the procedure in reference 9. 

The average value of the transverse momentum 
(column 7) lies within the limits of 1 to 2. To ex
plain how the assumption of constant transverse 
momentum influences the estimated values of 'Yc 
and K, the latter were calculated from Eqs. (4) 
and (5) for the value p li :::::l 1. The assumption of 
constant transverse momentum (p 1 :::::l 1 ) does not 
lead to substantial changes of the estimated values 
(columns 8 to 11 ) . This makes it possible to gen
eralize the described method for an estimate of 
the energy characteristics ( y c and K) in showers 
in which only the angular distribution of secondary 
shower particles is known. It should be noted that 
the estimated values of 'Yc found by such a method 
are in good agreement with the values obtained by 
Takibaev under the assumption of a power-law en
ergy spectrum of produced mesons. 
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As is well known, in cases in which the Born 
approximation for finding the phase shifts is not 
applicable, we must use some other more accurate 
method, for exampie the method of Pais. The pur
pose of this note is to give a brief derivation of 
the approximations of Born1 and Pais2 and also a 
numerical comparison of the phase shifts obtained 
by these two methods. 

Let us write the Schrodinger equation in the fol
lowing form: 

y" + [k2 -U -l (l + 1)/r2 ]y = 0, (la) 
u" + [k2 -l (I+ 1)/r2] u = 0, (1b) 

v" + [k2- (l (l + 1)- a2)/r2 ] v = 0, (1c) 

k = mv/ti, and a2 is·a certain constant. The in
teraction potential is connected with U by the re
lation U = (2m/ti2 ) V. The exact solutions of Eqs. 
(1b) and (1c) are well-known: 

u = V rrkr ;2 J w;, (kr), v = V rrkr;2 JV(l-t-'l•)'-a' (kr). (2) 

They satisfy the following boundary conditions: 

u (0) = 0, u ( oo)---+ sin (kr -lrr/2), 

v(O) = 0, v (oo)---+ sin(kr---'; V(l + \ 2 ) 2 - a 2 + 1--). 
(3) 

The exact solution of Eq. (la) satisfies the bound
ary conditions 

y (0) = 0, y ( oo)---+ sin (kr- lrr/2 + '1/z). (4) 

If we now require that the solution v of Eq. (1c) 
satisfy the same boundary conditions (4) as the ex
act solution of Eq. (1a), then the constant a 2 must 
be 

(5) 

Then 

v = Y rrkr;2 Ju+'f,H~z /" (kr). (6) 

Let us multiply Eq. (1a) by u and Eq. (1b) by y, 
subtract one equation from the other, and integrate 
from zero to oo, taking account of the boundary 
conditions (3) and (4) for u and y. Furthermore, 
in the integral that contains the interaction poten-
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tial V, the solution u is inserted instead of the 
exact solution y. This procedure gives the well
known Born approximation: 

00 

'"fjt = - "1i~ ~ V (r)JZ+'f, (kr) rdr. (7) 
0 

Applying this same procedure to Eqs. (1b) and 
(1c), we get the well-known Kapteyn integral3 

rJ[J.(rxt)Jv(rxt)¥=/~sin[~.~:t)/2]. 1-'=fov (8) 

0 ~· !-'=V. 

Finally, applying this procedure to Eqs. (1a) 
and (1c), where the solution for v is given by Eq. 
(6), and using Eq. (8), we get the Pais approxima
tion for the phase shifts: 

00 

21 + 1 - 2>Jt/" "m \ 2 
21 + 1 _ 4"1 11" 'Y/1 = -lt2 ~ V(r)J t+'f,-2~ 1 /',,(kr)rdr. 

I 0 

Pais obtained this formula by means of a varia
tional principle. We see that one can obtain the 
approximate formulas of Born and Pais for the 
phase shifts by using a single kind of procedure. 

The examples considered below show the ac
curacies of the Born and Pais approximations 

(9) 

(it must be emphasized that the Pais formula (9) 
is incorrect for the zeroth -order phase shift ) . 
For the Gauss potential V ( r) = - V 0 exp (- a 2r 2 ), 

Eqs. (7) and (9) give 

_ (l) _ 1rMVo (-- !!_)J (!!__) 
'Yjl Born - 'YJ 1 - 41i2a2 exp 2a2 l+'f, 2a2 • 

21 -i- 1 - 2'1) 11 r. r.MVo ( k2 \ ( k2 ) 
21 -i- 1- 4>Jz," 'YJI = 41i•a2 exp - 2a2ll+'f,-2~t ;rc ,2a2 . (10) 

Considering the scattering of a neutron by a 
proton (M is the mass of the proton) at 100 Mev, 
and choosing for the constants the values V 0 = 45 
Mev and a 2 = 0.266 x 1026 em - 2, we get the follow
ing values of the phase shifts by the Pais method: 
111 = 0.534, 112 = 0.221, whereas the Born method 
gives 111 = 0.487 and 112 = 0.197. Since the sec
ond Born approximation gives better results than 
the first, we shall compare the values obtained 
above for the phase shifts with the results of the 
second Born approximation, 4 111 = 0.552 and 112 = 
0.213. We see that the Pais method gives consid
erably better results than the first Born approxi
mation. 

For large values of l the phase shifts 111 
calculated by the Born and Pais methods approach 
each other, as can be seen from Eqs. (7) and (9). 
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IT has been shown in a previous paper1 that if in 
analogy with Einstein's theory of the gravitational 
field one describes the electromagnetic (vector) 
field as the curvature of an auxiliary "space" with 
the metric ds = Yi ctxi, then one can obtain a non
linear Lagrangian of the electromagnetic field, 
which in the case of a static spherically symmet
rical field leads to the potential 

tp = (efro V2)sinh (r0 V2;r), (1) 

This gives for the classical (unquantized) field 
mass of a stationary electron m 0 1 ~ m 0 /5, where 
m 0 is the experimental rest mass of the electron 
(the value mel~ m 0 /3 is erroneously given in 
reference 1 ) . 

To calculate the radiative (quantum) correc
tion ~mq to the mass of the electron, caused by 
the interaction of the stationary electron with the 
photon and electron -positron backgrounds, we 
must first of all find the wave solution of the field 
equations corresponding to the nonlinear Lagrang-• 
ian in question. Since this is practically unfeasible 
because of the great mathematical difficulties, it 
is not without interest to try to give at least a pre
liminary and approximate estimate of the size of 
~mq. The idea of the calculation is as follows. 

In the nonlinear theory under consideration, one 
gets in accordance with Eq. (1) for the energy of a 
stationary charge e situated in the field of another 
charge e, not the value E1 = ecp 1 = e 2/r, but in
stead 


