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The energy losses of fast electrons passing through thin films are considered from the 
viewpoint of the theory developed by Frank, Tamm, and Fermi, 1 taking into account spatial 
dispersion of the dielectric constant. 2 An expression is derived for the longitudinal dielec
tric constant which takes account of exchange effects in a high density electron gas. The 
phenomenological theory developed by Landau3 is used to determine the longitudinal and 
transverse dielectric constants of a degenerate electron fluid. It is shown that these quan
tities have singularities corresponding to the propagation of zero sound. The fast-electron 
losses associated with the excitation of both transverse and longitudinal zero sound are 
discussed. The dependence of the discrete losses on the scattering angle of fast particles 
in passage through optically anisotropic bodies is considered. 

1. The passage of fast electrons through thin films 
is characterized by so-called characteristic or dis
crete energy losses.'' The electrons lose energy 
in discrete amounts or quanta; in certain cases 
this effect results in clearly defined spectral loss 
lines. The connection pointed out by Bohm and 
Pines between the characteristic losses and the 
collective oscillations of electrons in a solid body5 

is important for an understanding of the nature of 
these losses. The excitation of these collective 
oscillations corresponds to the radiation of elec
tromagnetic waves in the medium by the charged 
particle. In absorbing media these waves decay 
rapidly and there is a transfer of energy from the 
fast particle to the medium via the collective os
cillations. In general, longitudinal electromag
netic fields can be set up in addition to the trans
verse fields. It is these longitudinal oscillations 
which are responsible for the collective polariza
tion losses of fast electrons. 

A theory for the energy losses of fast particles, 
based on the excitation of electromagnetic fields 
in a medium has been developed by Frank and 
Tamm in connection with the theory of Cerenkov 
radiation and by Fermi in connection with polari
zation losses (cf. reference 1). This theory was 
extended by Frohlich and Pelzer6 in order to ana
lyze discrete losses. In this analysis the position 
of the loss lines is determined by the zeros of the 
dielectric constant e: ( w) corresponding to longi
tudinal oscillations of tne electromagnetic field. 
A more precise formula for the loss line is 
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where n is the refractive index and K is the ab
sorption constant.* 

A theory for the energy losses of fast charged 
particles which takes account of spatial dispersion, 
which is a generalization of the theory developed 
by Frank, Tamm, and Fermi, has been developed 
by a number of authors. 2 t 

Spatial dispersion means that in an isotropic 
medium the dielectric constant becomes a tensor, 
assuming the form 

*The macroscopic theory developed by Frank and Tamm, 
and Fermi for fast charged particles applies only when the 
impact parameters for the collisions between the fast electrons 
in the medium are much greater than the interatomic distances. 
However, this condition no longer holds when the fast-electron 
scattering angle becomes large compared with the velocity 
ratio v0/v (v0 is the velocity of the electrons in the medium 
and v is the velocity of the fast electrons). 

It has been found experimentally that in scattering at such 
angles the energy associated with the discrete losses becomes 
a function of the scattering angle. 7 According to the micro
scopic theory•,. for longitudinal oscillations of the electromag
netic field (i.e., plasma oscillations) this angular dependence 
is natural since it indicates the dependence of the frequency 
of the longitudinal oscillations on wavelength. In the language 
of the macroscopic electrodynamic equations for a medium this 
corresponds to spatial dispersion of the dielectric permittivity 
(cf., for example, reference 10). 

tThis work is very similar to that in which various con
crete models are used to represent the medium; however, no 
connection has been established between particle energy 
losses and the dielectric constant. 8' 11 
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{ k.k. ~ kk. 
Eij (w, k) = r:,tr;(w, k) oii- 'k~ J + 'k~ r:,l (w, k), (2) 

where E:tr and E:z are the transverse and longi
tudinal dielectric constants. Using Eq. (2), we ob
tain the following expression for the energy losses 
of a fast charged particle in passage through a me
dium (per unit path length) 

+oo co 
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where Ze is the charge of the particle and v is 
its velocity. The first term in the curly brackets 
is responsible for the radiation of longitudinal 
waves while the second is responsible for the trans
verse Cerenkov radiation. Since the usual collec
tive losses for fast electrons are associated with 
the excitation of longitudinal waves, in what follows 
we will concentrate our attention on the first term 
in Eq. (3). 

From Eq. (2) we obtain the following expression 
for the scattering probability of a fast particle 
through an angle de with the emission of a lon
gitudinal photon (plasmon) in the frequency inter
val dw (per unit path length ) : 

dW 1 2&Z2 1 1 
-1i.w dO. doo = -1t-1i.-v2 e• -t- ( 1i.w 1 v p) 2 I m -ezt -;( oo-,-:;-;Y;=;(p=.e;=l~hi=c);;=• "'+=(;=cu=l;=v=;;) •"') ' 

(4) 
where p is the momentum of the particle and it is 
assumed that 8 « 1. * · 

Since the experimentally measured quantity is 
Im { 1/ EZ ( w, k)}, it is this quantity which must 
be predicted by a collective-loss theory that uses 
a model to describe the behavior of the electrons 
in the medium. Below we obtain expressions for 
E:Z for a high-density electron gas and for an elec
tron liquid and also discuss certain features of the 

*We note that taking account of spatial dispersion makes 
the usual distinction between remote and near losses unneces
sary. Thus, for high momentum transfer (near losses) ilk is 
much greater than the characteristic electron momenta and the 
latter can be considered free electrons; for rf we use the ex
pression 

e1 (w, k) = 1- wg;[w2 - (Ji.k212m) 2]. 

where w~ = 41Te~N/m and N is the number of electrons per unit 
volume. Correspondingly, for large scattering angles (high 
ratio of the velocity of the electrons in the medium to the ve
locity of the fast particle, but much smaller than unity) Eq. (4) 
yields 

l (4') dW 11iwd0.dw = o (w- p2fJ2 12m h) NdcrRuth I dO., 

where daRuth =(2e2 Z/vp82 ) 2 d0. In other words, the dispersion 
in the dielectric constant takes acrount of the usual Ruther
ford scattering, i.e., near collisions. 

energy losses of fast particles due to the excita
tion of zero sound. 

2. The most detailed studies of the longitudinal 
dielectric constant of a degenerate electron gas 
have been carried out in the self-consistent Har
tree approximation. 2•8•9•12 In this analysis, in the 
long wavelength region, where spatial dispersion 
may be neglected, we have 

s1 (w, k) = 1- w~/ w2 - 3p~2 1 5m2(tJ2 , (5) 

where Po is the momentum at the Fermi surface. 
However, the self-consistent field approxima

tion is valid only for a degenerate electron gas of 
high density .12 •13 Because real electron densities 
in solid bodies are not very great, it is convenient 
to determine the corrections to the work in reference 
5 by means of an expansion in inverse powers of 
the density. The exchange correction can be ob
tained if we use the Hartree-Fock approximation 
instead of the Hartree self-consistent field. 8•9 

In this case the electron distribution function is 
given by the equation13 •14 

i!of + _E._ i!of + _!:___ \ d , he21i.2 l' i!fo .!!._0f ( , ) _ i!fo .!!._0f ( >] 
i!t m i!r 2 j P 1 p- p' 1• iJp iJr P ' r iJp' iJr p, r 

i!fo O + eE iJp = , (6) 

where Of is the non -equilibrium correction to the 
distribution function, f0 is the equilibrium distri
bution function for an ideal Fermi gas, and E is 
the electric field, which is given by the equation 

divE = 4 ... e ~ dpof. (7) 

We assume that the wavelengths are large com
pared with the distances between particles. 

In order to determine the longitudinal dielectric 
constant by means of Eq. (6), it is necessary to ex
press Of in terms of the electric field (the de
pendence of the field on coordinates and time is 
of the form e-iwt+ikr); then, from Eq. (7) we 
have 

4 7te ~ dpof = { 1 - s1 ((u, k)} ikE, (8) 

whence EZ can be found. In the long-wavelength 
region the quantity being sought can be given as 
an expansion in powers of k. It is not difficult to 
show that Eqs. (7) and (8) yield; 

CU~ { 3p~k2 rl 1 ( 'hcu0 ')2 i} 
:::::: I -(,)2 I + 5 rn2wz I - Tu- pg I 2~ j . (9) 

Here v0 =Po /m is the velocity of the electron at 
the Fermi surface. The small numerical coeffi
cient means that the correction which is found for 
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the term proportional to k2 [ cf. Eq. (5)] is small 
even at the densities of valence electrons in real 
metals; in a favorable case it is 20-30%. 

The condition for excitation of plasma oscilla
tions corresponds to the vanishing of the quantity 
Ez. This condition yields the following spectrum 
for the plasma oscillations: 

(10) 

The last relation has been obtained by the author, 13 

and later by Nozieres and Pines. 15 

3. We now determine the longitudinal dielectric 
constant of a degenerate electron liquid, using the 
theory of a Fermi liquid given by Landau.3 In ac
cordance with reference 14, we use in place of 
Eq. (6) the following equation for the non-equilib
rium correction to the electron distribution func
tion 

ft of + v 1r {of-~; 081} + eEv 8J: = 0. (ll) 

Here f0 is the equilibrium distribution function; 
it differs from the corresponding distribution func
tion for an ideal gas only in that it is a function of 
the energy of the quasi-particles E (p) and not 
the energy of the free electron; 

081 (p, r) = ~ rr (p, p') of (p', r) dp', (12) 

where cp (p, p') is in general an unknown function 
which reflects the correlation between particles. 
In obtaining a simple qualitative picture we need 
not take account of the periodic ion fields. Under 
these conditions the electron velocity is given by 
the relation 

ae p \ d ' ( ') 8fo v=-ap = m + J p 9 p, p 8p'. (13) 

In principle, using Eq. (8) and the relations 
given above it is possible to determine EZ (w, k). 
Without making any assumptions as to the form 
of the function cp (p, p'), however, we can only 
determine the longitudinal dielectric constant in 
the long wavelength region (small k): 

2 

81 ( w, k) = I - =~ [I + {- ~~~ k2 (I + + A0 + 4~ A2 ) ] , 

Vo =(Po I m) (I + A1 I 3fl, Po= (3 ;c2 )''• N'!, fi. (14) 

Here Po is the electron momentum at the 
Fermi surface while the coefficients Az are 
defined by the expression 

where X is the angle between the vectors Po and 
p~. 

Equation (14) for EZ differs from the corre
sponding expression for an electron gas in the 
Hartree approximation (5) or the Hartree-Fock 
approximation (9) by the coefficient for the k2 

term. In the case of an electron liquid the coeffi
cients in the expansion of cp can also be greater 
than unity. We expect that the region in which the 
term in Eq. (14) proportional to k2 may be as
sumed small will be narrower than the correspond
ing region for Eqs. (5) and (9). Hence we now con
sider the longitudinal dielectric constant in the 
region in which the expansion in powers of k 
cannot be used. 

We assume further that in the expansion in 
(15) only the first two coefficients A0 and A1 

are different from zero. In this case Eq. (11) 
becomes an integral equation with a degenerate 
kernel and can be solved easily. We obtain 

where 

An important property of the expression which has 
been obtained for the longitudinal dielectric con
stant is the singularity which occurs when the 
denominator in Eq. (16) vanishes 

Equation (18) is the dispersion relation for zero 
sound.16 Hence the existence of a singularity in 
(16) is completely understandable: for the value 
of w/kv0 which satisfies Eq. (18) the electromag
netic field can excite zero sound in this case. 

The solution of Eq. (18) becomes especially 
simple in the case in which A0 is positive and 
large compared with unity and A1• In particular, 
in this case 

(19) 

while the expression for EZ can be written in the 
form 

81 (w, k) = I - w~l (w2 - A 0v~k213). (20) 

It is interesting to note the similarity between the 
denominators in (20) and (9) when we do not carry 
out the expansion in powers of k2 in the latter. 
In Eq. (9) the coefficient in front of v~k2 is posi
tive and small compared with unity; the absence 
of a singularity in Eq. (9) indicates that it is im
possible to have zero sound in this case. 

The spectrum of plasma oscillations in a de
generate electron liquid has been considered by 
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us earlier .17 •18 Using the results obtained in ref
erence 18 we can obtain an expression for the 
transverse dielectric constant of the electron 
liquid. Assuming, as was done in deriving Eq. 
(16), that all the Az with l > 1 are equal to 
zero, we have 

3w~ 1- (s2-1) 'l) (s) 
sir (w, k) = I - Lw2 1-1/2AJ {(lis)- (s2-1) 'l)(s)} (21) 

The singularity in Etr at 

1- }Ad{-(s2 -l)'Y/(s)} = 0 (22) 

is similar to the corresponding singularity in EZ 
and provides the possibility of exciting zero sound. 
The sole difference is that in Eq. (16) we are con
sidering the excitation of longitudinal zero sound 
while in Eq. (21) we are considering transverse 
sound (cf. below). 

4. For small spatial dispersion the longitudinal 
dielectric constant assumes the form: 

(23) 

Equation (23) allows us to write the following ex
pression for the scattering probability of a fast 
electron with the emission of a longitudinal quan
tum (per unit path length): 

dW 1 2e2 1 1 
1iwdQdw = n1iv2 62 + (1iw 1 vp) 2 Im e (w)- a [(p6 I 1iw)" + 1 I v2 ] 

(24) 
The case of small absorption is of special interest; 
in this case EZ may be considered real. Essen
tially the same situation arises in the case of 
Eqs. (5), (9), and (14) for frequencies much larger 
than the electron collision frequency. Assuming 
that 0! = a (p0 /m )2 (a is a numerical factor) we 
can write Eq. (24) in the form* 

dWl _ 2e2 1 0 [sz (w -. f(i!!!.) 2 + (~)2 )] 
1iwdQdw - 1w2 (J2 + (1iw I vp2 ) ' V \ 1i v 

=~:. 02+(Livp)2 a[s<w>-a{(~Y +(~:yo2}]·<25) 
The dependence of the discrete energy lines on the 
scattering angle given by Eqs. (25)- (26) assumes 
the following form for an electron gas or an elec
tron liquid: 

t.E (8) = hw = 1iw0 + (av2 p~ I 21iw0) 82 , (26) 

This dependence is apparently observed experimen
tally. 7 It is clear that the study of this dependence 
and the precise experimental determination of the 
coefficient for e2 is extremely important in choos
ing a model to describe electrons in a metal. 

*In this we make use of the fact that 

lim Im (e1 I I e1 12) = 1to [R.e e1] for. Im e1 -+ 0. 

We now consider certain of the results obtained 
above and their consequences for Fermi liquids 
when the spatial dispersion is not weak. We may 
note first that EZ as given by Eq. (16) becomes 
complex w < kv0• In other words, one can speak 
of discrete loss lines and use Eq. (25) only for 
scattering angles which satisfy the inequality 

8 < 1iw/V0p. (27) 

For large angles a discrete loss line is impossible.* 
The dielectric constant in (16) indicates a rela

tively complicated dependence for the loss line 
scattering angle in the angular region t:iw0 /vp0• 

The picture is simplified considerably for large 
A0, in which case Eq. (20) holds. The differential 
scattering probability becomes 

dWl zez w~o(w-Vw~+(A013)(v0p811i) 2 ) 
1iwdQdw = 1iv• ez + (1iw I vp)• V w~ + (Ao 1 3) (v0p0 I 1i)2 

(28) 
In the angular region 

0 ~ 01 = (1iw0 /V 0 p) VAo! 3 < hwo/VPo 

the results of Eq. (28) are similar to those of Eq. 
(25). On the other hand, at large values of 81 

there is an important difference. In this region 
the energy loss is proportional to the scattering 
angle ti w ~ ,J A0 /3 v0p8, corresponding to the ex
citation of zero sound photons (19). This means 
that in the region 8 > 81 the angular distribution 
for scattering (28) also differs considerably from 
the corresponding distribution for weak spatial 
dispersion. In particular, whereas in the region 
8 « 81 [as in the case of Eq. (25)] Eq. (28) gives 
a distribution proportional to [ 82 + (tiw/vp )2 ] - 1, 

in the region 8 » 81, Eq. (28) gives a distribution 

1;8 [82 + ('liw; vp)2]. 

The strong angular dependence of the discrete 
losses of the scattered electrons means that the 
lines for the total losses (integrated over the 
angle) are relatively wide. Hence attempts to 
observe the zero sound associated with the radi
ation losses of fast electrons must be directed 
toward a study of the angular dependence of the 
wide lines associated with total energy loss. This 
does not mean that zero sound is not also associ-

*If the condition w < kv0 is satisfied the electrons in the 
liquid can radiate and absorb quanta of zero sound. This con
dition is analagous to the condition for Cerenkov radiation. 
For fast-electron scattering angles which satisfy the relation 
8 > 1iw/v0 p the "Cerenkov" mechanism becomes important in 
the energy dissipation of electrons in the medium; this leads 
to smearing of the loss line even if the usual dissipation 
characterized by the imaginary part of E(w) is small. 
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ated with narrow lines. However, the zero sound 
effects should be most pronounced for wide lines. 

When A0 « 1 effects connected with zero sound 
do not give noticeable broadening of the total-loss 
lines. For positive A0 the expression for the 
zero sound spectrum assumes the form 

w;kv0 = s = 1- exp {7 2/A 0 }. (29) 

At small A0 the excitation of zero sound is pos
sible only in a narrow region close to the angle 

e = tiw/pvo. 
5. We now consider one other possibility which 

leads to a dependence of the discrete losses on the 
scattering angle, and which is not a result of spa
tial dispersion. This possibility arises in optically 
anisotropic bodies. For example, in the motion of 
a fast nonrelativistic electron along the axis of 
symmetry a uniaxial crystal the differential scat
tering probability per unit path length is* 

dW (6, w) 2e2 Im e 1_ (w) 62 + Im e 11 (w) ('hwjvp) 2 

(30) :ltwdwdQ =r.tiv [Reel_(w)62 -:-Ree 11 (w)(1tw/vp)] 2 +[Imej_(c.o)02 +Ime 11 (w)(hwjvp)] 2 " 

It is clear that in the case of small absorption, 
for which we can neglect the imaginary part of E, 

the discrete loss line is determined by the zeros 
of the expression 

(31) 

For an optically anisotropic medium the quantities 
E 1 and Ell vanish simultaneously only by coinci
dence. Hence the zeros of the expression in Eq. 
(31) are generally functions of the scattering angle 
e. Under these conditions, in the small-angle re
gion e « tiw/vp the position of the loss line is 
determined by the frequency at which E II ( w ) van
vanishes. On the other hand, for angles e » tiw/vp 
the loss line is determined by the point at which 
E 1 ( w ) vanishes. In the general case of motion 
of an electron in an optically anisotropic crystal 
characterized by the tensor Eij, for arbitrary 
orientation of the direction of motion with respect 
to the crystallographic axes, in the denominator 
of Eq. (30), in place of Eq. (31) we have (cf. ref
erences 1 and 2) Eijkikj [where kz = w/v, kx = 
(pe/n) cos cp, ky = (pe/ti) sin cp]. Hence, in ad
dition to the dependence of energy loss on angle 
there is an azimuthal dependence on the angle cp. 
The dependence of the energy loss on scattering 
angle can lead to a broadening of the total (inte
grated over scattering angle) loss line. t We 
consider this problem in somewhat greater detail. 

According to Eqs. (30) and (31) the total energy 
loss in the scattering angle region e < emax can 
be written as follows for small absorption: 

~ dQ(dW I 'liwdwdQ) = 2rre2 I (1iv2 !E1_ (w) !), (32) 
6<6max 

for the condition 

This quantity vanishes if this condition is not sat
isfied. Here emax "' tiw/pv, where v is the 
characteristic velocity of electrons in the medium. 
We assume that E1 and Ell do not vanish simul
taneously. 

Thus the line shape is determined by E 1 while 
the line width is given by (33). It is important, as 
is seen from this condition, that the frequency at 
which E 1 ( w) = 0 lie outside the loss line. If this 
frequency is far from the edge of the line, the line 
will be relatively smooth. On the other hand, at 
high velocities the edge of the loss line may be 
close to the point at which E 1 ( w ) vanishes. In 
this case the edge of the line will exhibit a sharp 
narrow peak which will practically obliterate the 
line. The latter is due to the fact that for angles e » 
tiw/vp the loss line is determined by the point at 
which E 1 ( w ) vanishes. A similar picture holds 
for the arbitrary orientation of the direction of 
motion of the fast particle. 

6. In considering the losses of relativistic 
electrons it is necessary to consider the role of 
transverse quanta, in particular, Cerenkov radi
ation. In the case of an electron gas the Ceren
kov radiation is impossible since the dielectric 
constant (real part) is less than unity. How
ever the situation is different in an electron 
liquid. According to Eq. (21) the transverse di
electric constant becomes positive in the region 
of frequencies and wave vectors which satisfy the 
condition for the propagation of transverse zero 
sound (22). In this connection we now consider 
the discrete transverse losses of relativistic 
electrons. 

Limiting ourselves to small angles ( e « 1 ) , 
from Eq. (2) we have the following .expression for 
the scattering probability of a fast particle per 
unit length into an angle de with the emission of 

*Strictly speaking, for optically anisotropic bodies the radiation of plasmons is nothing more than the Cerenkov radiation. 10 

tThe possibility of broadening of this kind has already been indicated in references 10 and 18. 
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a transverse quantum in the frequency range dw: 

Neglecting absorption we have 

xo {[~ Etr(u), y(~Y-r- (~n -I J (:;r _ e2}. 

(35) 

The zeros of the argument of the i5 -function deter
mine the discrete energy of the Cerenkov photon 
lost by a fast particle in being scattered through 
an angle (}. 

In the region of the singularity determined by 
Eq. (22), the transverse dielectric constant (21) 
assumes the form 

(1)2 

str (w k) = I + ___(!__ _Y_ 
' w2 s- s0 ' 

(36) 

where s = w/kv0, s 0 is the solution of Eq. (22), 
and the factor y is 

( 3) s0 (s~-1) 
j= 1+-

Ar 3s~-1- Ar/3. 

The argument of the i5 -function in Eq. (35) van
ishes if we substitute Etr as given by Eq. (36) 
when 

nW=Vop[so6+t(1iwo/Cp)2 j0]. (37) 

Here is assumed that v"' c. In order for the for
mula to apply the condition e » (tiw0 I cp) must be 
satisfied. Hence the frequency determined by Eq. 
(37) is only slightly different from the frequency 
of transverse zero sound. It should be noted that 
in order to neglect the imaginary part of Etr it 
is necessary that w be considerably greater than 
the collision frequency which determines the dissi
pation in the electron liquid. The latter condition 
can be satisfied for scattering angles which are 
not too small. 

Finally we may note that in real solid bodies in 
addition to the effects of electron correlation an 
important role is played by the lattice field which 
can complicate the interpretation of the problems 
considered above. Hence, from our point of view, 
most interest attaches to attempts to find experi
mentally qualitative features connected with zero 
sound and those derived from the theory of a 
Fermi liquid. 

7. In conclusion we may make general remarks 

relating to the excitation of zero sound and the 
more general problem of interpretation of discrete 
losses. To what degree can one speak of the exci
tation of a freedom in a solid body - in our case, 
zero sound, and in the more widely discussed case, 4- 7 

the levels of individual electrons? In the latter case 
one considers the transitions of electrons from one 
level to another and the lines which are thus deter
mined, in the opinion of a number of authors, are 
in fair agreement with this interpretation. For 
an answer to this problem we consider as an ex
ample the dielectric constant corresponding to 
one level wr: 

E = I- w~/(w2 - w;). 

The frequency of the longitudinal oscillation deter
mined from the condition E = 0 is w2 = w5 + w~. 
It is clear that for the level Wr « w0 the exist
ence of the level is unimportant for the determina
tion of the frequency of the longitudinal photon. On 
the other hand, in the case Wr » w0 the frequency 
of the longitudinal photon (plasmon) is essentially 
equal to the frequency of the level. Hence the en
ergy of discrete losses may be close to the corre
sponding energy of the one -electron transitions. 

Similarly, in our case it is possible to speak of 
the excitation of the longitudinal zero sound only 
under conditions in which the frequency of the zero 
sound is considerably greater than the frequency 
w0 = v 47Te2N/m . If this is not the case the fre
quency of the longitudinal oscillations excited in 
the medium is considerably different from the fre
quency of zero sound. 

In conclusion I wish to express my gratitude 
to V. L. Ginzburg and L. D. Landau for a number 
of useful discussions of the problems considered 
in the present paper. 
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