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The Green's function method and the diagram technique are used to calculate the energy 
loss per unit time by a particle passing through a plasma. Numerical values of the fac
tors in the argument of the logarithm have been obtained for limiting cases. 

1. INTRODUCTION 

CALCULATION of the decelerating ability of a 
plasma by the method of paired collisions leads to 
a logarithmic divergence connected with the long
range action of the Coulomb forces. The screening 
effect of the medium can be neglected only when the 
distance between the particles is less than the Debye 
radius. To calculate the contribution due to close
range collisions, the Coulomb field is cut off at the 
Debye radius. Akhiezer and Sitenko1 used the 
kinetic equation with a self-consistent field to cal
culate the long-range collisions, at which the mo
mentum transferred is much less than the recipro
cal of the Debye radius. These methods do not lead 
to a correct description of the interaction of par
ticles separated by a distance on the order of the 
Debye radius, and the results have therefore only 
logarithmic accuracy. In the present paper we ex
press the decelerating ability in terms of a corre
lation function, which is a particular c.ase of a two
particle Green's function. To calculate the latter 
we use the diagram technique, the convenience of 
which lies in the fact that it permits us to sum an 
infinite number of essential terms. Furthermore, 
by estimating the discarded graphs, we can readily 
determine the accuracy of the obtained results. 

2. TRANSITION PROBABILITY 

We consider a system of interacting particles 
which are in thermal equilibrium. The Hamilto
nian of the system is 

H=Ho+Hh H6 =~spa;ap, 

(1) 

(we use a system of units in which m = n = e2 = 1 ) , 
where aJ; and ap are the operators of production 
and annihilation of particles with momentum p, 
Ep = p2/2, and Vq is the Fourier component of 
the interaction potential. For particles interacting 
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in accordance with Coulomb's law, we have Vq = 
47T/q2• The particle passing through the medium 
has a mass M and a velocity v. The Hamiltonian 
of the interaction between the particle and the me
dium has the form 

(2) 

where Clip and Clip are the operators of production 
and annihilation of the passing particle. 

We consider the particle to be sufficiently fast, 
e2/nv « 1, so that its interaction with the particles 
of the medium can be treated by perturbation the
ory. The probability of a transition in which the 
particle goes from a state with momentum p1 = 
Mv into a state with momentum p1 - q, and the 
medium goes from state n into state m, is 
given by the known equation 

Wq = 2TC I (m, P1- q [ H; In, p1)[2 

(m, P1- q I H; In, PI) = Vq (]at ap-q }mn· 
p 

(3) 

(4) 

To obtain the total probability of a transition of the 
particle from a state with momentum p1 into a 
state with momentum p1 - q it is necessary to 
sum expression (3) over all final states of the sys
tem and to average over the initial ones with a 
density matrix 

p = exp ~ (Q + p.N- H), ~ = 1 I kT. (5) 

Using (4), we get 

(6) 

where 

<l>q (w) = ~~ (~atap-q) f2e~<O+v.Nn-En) 
mn p mn 

(7) 
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3. TWO-PARTICLE GREEN'S FUNCTION 

To find cllq ( w ) let us determine its connection 
with the two-particle Green's function 
K (r1, tl> r2 , t2) = - i Sp exp [~ (.Q + p.N- H)] 

(8) 

where 

~ (r, t) = e-iHt 2] apeipr eiHt, ~+ (r, t) = e-iHtl] a~ e-ipr eiHt. 

p p 

We are interested only in such a two-particle func
tion, in which the coordinates and the times of the 
operators 1/J and 1/J+ are pairwise equal. We can 
obtain for such a function dispersion relations 
analogous to those obtained by Landau2 for single
particle Green's functions. It is easy to verify 
that K depends only on the differences r = r 1 - r2 

and t = t1 -t2• Let us make a Fourier trans
formation with respect to the variable r 

Kq (t) = ~ dre-tqr K (r, t) 

~ - i 2] e ~ (0 + r.tN n- En) 

t > 0, 
~ mn 

l-i 2] e ~ (0 + r.tNn- En) I ( '1;1 + ) 12 i(Em-E 71 )t 
.LJ ap ap-q nm e , 

mn p 

t < 0. 

We interchange the summation indices in the lower 
sum. Then, using the definition (7) of the function 
cllq ( w ) , we get 

co 

- i ~ d"'<Dq (<il) e-iwt' t > 0, 
-co 

co 

- i ~ ~~q (<il) e-0w e-iwt, t<O. 
--<lO 

We now go over to Fourier components in terms 
of the variable t 

co 

K (q, w) = ~ dteiwt Kq (t) 
-co 

co 

= ~ dw'<l>q(w') { (1-e-~"'')P-"'-c;-,-_-"'-
-co 

+i-r;(l +e-~"'')o(w'-w)}. (9) 

The symbol P denotes that the integral is taken 
in the sense of its principal value. Instead of 
K ( q, w ) it is more convenient to consider the 

function K ( q, w ) , which is analytic in the upper 
half plane of the variable w: 

~ co~ 1 e-~w' 
K (q, w) = dw'<l>q (w') , - .0 • (10) 

(i)-(i)-! 

-co 

Equations (9) and (10) can be used to calculate 
cllq ( w): 

$ w = Im K (q, <il) = Im K (q, ro) 
q() tt[1+exp(-~<il)] tt[1-cxp(-~<il)j (11) 

To calculate K we use the technique employed 
by Abrikosov, Gor'kov, and Dzyaloshinski13 to find 
single-particle functions. For this purpose we 
consider the function 

~ (r, -r) = e-<r.tN-H)' ~apeipr e<r.tN-H)<, 

p 

f (r, -r) = e-(r.tN-H)< 2] a; ei~r e<~'N-H)<. 
p 

(12) 

The value of eif", like that of K, depends only on 
the differences r = r 1 - r 2 and T = T1- T2; there
fore, after transformations analogous to those 
made with the function K ( t), we get 

co 

~ dw<Dq (ro) e-"'', 't' > 0, 

ri1( (q, -r) = -00 

(13) 
00 

~ dwCDq (ro) e-w(~+<), 't' < 0. 

-00 

We shall detail below a method of calculating 
the function ri1t' in the interval - {3 < T < {3. We shall 
show how, knowing ri1t' in this region, we can find 
the function cllq ( w ) . We shall assume that ri1t' ( T) 

is given by (13) in the intervals 0 < T < {3 , and is 
continued periodically outside this interval. Then 
the coefficients of its Fourier expansion are de
termined from 

~ 

eif"n = ~ ri1t' (q, -r) exp (2 1tim I~) d-r. 
0 

Inserting the value of dTt' ( q, T) from (13) and in
tegrating with respect to T we obtain 

(14) 
-co 

A direct comparison of (10) and (14) shows that 

eif"n (q) = K (q, 2;.in I~). • (15) 

Equation (15) yields the function K (q, w) for sev
eral values of the argument w = 27rin/{3. In addition, 
it is known that the function K ( q, w) is analytic in 



188 PASSAGE OF PARTICLES THROUGH A PLASMA 

the upper half plane, and is therefore uniquely deter
mined from its values at the indicated infinite set of 
points. Knowing the function K ( q, w ) on the real 
axis, it is possible to find <Pq (w) from Eq. (11). 

We can also calculate K (q, T) by the diagram 
technique. We introduce the following operators 
in the interaction representation 

+ ( ) + C< -11.)~ ap 1: = a:>e P , 

H ( ) H,TH -H0T 
1 't: = e 1e • 

In Eq. (12) we go in the usual manner from the op
erators in the Heisenberg representation to oper
ators in the interaction representation. In the 
region 0 < T1 < {3, 0 < T2 < f3 we obtain 

X T { ~ a;, ('r1) ap,-q (1:1 ) a;, (-;2 ) ap,+q ('r2 ) 

Pt,Pt 

~ 

Xexp [- ~ H 1 (1:) d1: ]}. (16) 
0 

The factor exp [-I Ht< T ) dT J can be expanded 

in powers of H1• Inserting this expansion into (16), 
we obtain an expansion of if' ( q, T) in powers of 
the interaction. Each term of the expansion can 
be represented by a diagram. Corresponding to 
each dotted line on the diagram is a factor V q. 
and to each solid line there corresponds a null 
Green's function of the particle 

J (1 + np) e -(<p-:.<JT, -r > 0, 

G (p, 1:) = l + np e-<•p-:.<)T ' 't" < 0, (17) 

np = [e<•p-:.<JB ± l] -1. 

The upper sign pertains to Fermi particles and the 
lower one to Bose particles. The function if' ( q, T) 

is represented by the sum of all the connected 
graphs that have two outer vertices. Two solid 
lines with momenta that differ by q meet at each 
of these vertices. Several first-order diagrams 
are show11 in the figure. 

Calculation of the probability of a transition by 
considering the interaction of the particle with the 
medium as paired collisions between the passing 
particle and the particles of the medium is equiv
alent to taking into account. only the simplest dia-

ll 4 c a f !1 

gram a in calculating the function if'. In the case 
of a plasma, such a method gives for the deceler
ating ability an expression that diverges logarith
mically at small q. To eliminate this divergence 
it is necessary to take into account the screening 
action of the medium, i.e., more complicated 
graphs. Terms expressed by the graphs b or 
d contain factors Vq = 47T/q2 and therefore be
come comparable at small q with the term rep
resented by graph a. Let us segregate all the 
graphs that contain Vq; for this purpose we de
note by II ( q, T ) the set of the compact parts of 
the function if', i.e., those containing no parts 
that are connected only by one dotted line. Ex
amples of such graphs are a, c, f, and g. The 
function if' ( q, T) is related to II ( q, T ) by the 
integral equation 

B 

if'(q, 1:) =IT (q, 1:) + ~ d1:' IT(q, 1:-1:') Vqif' (q, 1:'). (18) 

Expanding in a Fourier series in T and solving 
the resultant algebraic equation, we find 

ITn (q) 
if'n (q) = 1-V qiTn (q)' 

B 

where ITn (q) =~IT (q,1:) exp(2 ~~n")d-r. 
0 

Inserting the expression obtained for Kn ( q) in 
(15) we get 

K (q, w) =IT (q, w) ![l- Vq IT (q, w)], (19) 

where II ( q, w) is a function analytic in the upper 
half plane of the variable w, which coincides with 
lin ( q) at the points w = 2 rin/ f3. 

For the transition probability we obtain from 
Eqs. (6), (11), and (19) 

W - 2 v~ I n (q, co) 
q-1-exp(-~ro) m1-Vqll(q,ro)' (20) 

where w = Ep1 - Ep1-q. 
In the derivation of (20) we made no use of the 

properties of the medium, but the function II ( q, w) 
can be calculated only in limiting cases. For a 
sufficiently rarefied plasma and for a low-tem
perature ~lectron gas of high density, it is possible 
to restrict the calculations to the term shown in 
graph a. From Eq. (17) we obtain in these cases 
by simple calculation 

(21) 

For a rarefied plasma, the most important addi
tions to Eq. (21) are represented by graphs of 
type f or g; their ratio to the principal term is 
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on the order of V f33e3n . Thus, formula (21) is 
valid every time that the Debye theory is valid. 
At low temperatures the greatest correction is 
determined by the graph c; in this case the ex
pansion parameter is the usual parameter of per
turbation theory, e2m/tip0, where Po is the lim
iting momentum of the limiting momentum of the 
Fermi surface, connected with the particle den
sity n by 

(22) 

4. PLASMA OSCILLATIONS 

The spectrum and the damping of collective 
excitations that represent the density oscillations 
are determined by the poles of the function K ( q, w ) 
in the lower half plane. From (19) we obtain an 
equation for the spectrum 

1 =VqTI(q,w). (23) 

Equation (23), with account of (21), is the same 
equation that Klimontovich and Silin4 obtained with 
the aid of the quantum -kinetic equation. At small 
q we have 

(24) 

Inserting this expression into (23), we obtain 
the Langmuir spectrum 

(25) 

where the electron density is 

The damping of the excitations is determined by 
the imaginary part of w, which can be found by cal
culating the imaginary part of II (q, w). Calcula
tion of Im II (q, w) from Eq. (21) leads to zero 
damping at zero temperature, and yields at high 
temperatures 

'I 4 R 2 

Imw =- (2 n~)' ~exp (- ~)' -'-s"n'-'-- q" 2q2 , (26) 

which agrees with the expression derived by Lan
dau. 5 Taking account of higher-order terms in 
II ( q, w ) which are represented by graphs of 
type f or g, it is possible to determine the damp
ing due to the viscosity of the electron gas. It is 
present at zero temperature and drops more slowly 
with diminishing q at high temperature, although 
at q2 ~ {3w~ this damping is much less than that 
calculated from Eq. (26). 

5. DECELERATING ABILITY OF PLASMA 

The energy lost by a passing particle per unit 
time is given by 

dE J dt = (2 'i'trs ~ (sp,- s,_q) U7 qdaq. 

Inserting into this equation the value of Wq from 
(20) and Vq = 47T/q2 we get 

00 1 

dE -8 I d \ d w Im I1 (q, ro) (27) 
-dt- j q J x1-exp(-~ro) q2 -4nll(q,ro), 

0 -1 

where 

X=Vqjvq, W=Sp,-Sp,-q =Vqx-q2j2M, 

v is the velocity and M the mass of the passing 
particle. 

We consider the case when the particle moves 
with a velocity much greater than the mean ther
mal velocity of the electrons. The integral in (27) 
is broken up into two regions, q > q1 and q < q1, 

with q1 chosen such that 1/ {3 » qi » K2, where 

(28) 

( K is the reciprocal of the De bye radius ) . In the 
first region we can neglect 47TII ( q, w ) compared 
with q2 , since II is always of the order of K2. 
We calculate Im II from Eq. (21) 

Im TI = n (2n~)'/, [ 1- e-~"'] exp {- _1_ (.!'!._- _!1_)2} • (29) 
~ 2 q 2 

Inserting this expressioninto (27) we get 
00 1 

-dE I = 4 n (2 'i't~)'/• \ dq \ dx vx- q I 2M 
dt 1 j J q2 

q, -1 

xexp{- ~ (vx-+M; 1)}· (30) 

Neglecting terms on the order (ve/v)2 (ve is the 
mean thermal velocity of the electron), we have 

_dE I _ 4nn In 2Mv 
dt 1 - v ql (M + 1) ' 

In the integral in the second region, q < q1, we 
can put w = vqx and go from integration with re
spect to x to integration with respect to w: 

q, vq 

_dE I _ 8 \ ~ Im \ wdro I1 (q, ro) 
dt 2 - j vq ~ 1- exp (- ~w) q2 - 4 nll (q, w) • 

o -vq 

(31) 

In calculating the integral with respect to w we 
make use of the fact that the integrand function 
differs from the func:tion K ( q, w) only by a mul
tiplicative factor and is therefore analytic in the 
upper half-plane of the variable w. We modify 
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the contour integration in the upper half plane in 
such a way that the points - vq and vq are joined 
not by the real axis but by a semicircle of radius 
vq with its center at the origin. On this contour 
I w I = vq » veq and therefore, again neglecting 
terms of the order ( ve /v )2, we use Eq. (24) for 
II ( q, w). The integral with respect to w in (31) 
becomes 

\ de» nw 

~1-exp (-~w)w2-w~ 

The integrand is analytic in the upper half-plane, 
and we can therefore shift the contour back to the 
real axis, going around the poles w = ± w0 on the 
real axis from above. The imaginary part of this 
integral, which is of interest to us, is due to the 
detouring of these poles. When vq < w0 it van
ishes since the ends of the contour lie between the 
poles, and when vq > w0 the imaginary part equals 
rr/2. Inserting this into (31) we get 

-(dE I dt) /2 = 4rrn In (vq1 I wo)· 

Adding this expression to that obtained earlier 
for (dE/dt)l 1, we obtain an expression for the 
total losses: 

_ dE = 4"ne4 In 2Mm'l•o2 (32) 
dt mo 1L (M + m) V 47tne2 

This equation was obtained by Akhiezer and Sitenko1 

accurate to within a logarithmic factor. The nu
merical factor given in Eq. (25) of that reference, 
however, contains an incorrect multiplier, 1.23, 
under the logarithm sign. 

In this expression for the total losses, the com
ponent due to paired collisions can be separated 
from the component due to radiation of plasma 
waves only with logarithmic accuracy. Collision.s 
in which the momentum transferred is much greater 
than the reciprocal Debye radius can be considered 
paired and their contribution is 

-dE I dt = (4rrne4 I mv) In (mv 1 hx;. 

When Im II is small, the contribution to dE/dt 
produces in the integrand of Eq. (27) a pole located 
in the lower half plane near the real axis. These 
losses are due to radiation of long-lived plasma 
waves, the spectrum of which is determined by 
the pole of the integrand, i.e., by Eq. (23). Such 
waves can be considered excited as long as their 
damping, given by Eq. (26), is small compared 
with their frequency, i.e., when q « K. Thus, the 
losses connected with their emission are 

-dE I dt = (4rrne4 I mv) In (v 1 v,). 

Equation (32) shows that the total losses of a fast 
particle in a plasma are independent of the tern-

perature. It can be verified that Eq. (32) is cor
rect for any electron velocity distribution, pro
vided the electrons can be considered free and 
their mean velocity is much less than the velocity 
of the passing particle. In particular, Eq. (32) is 
valid for energy losses in a high -density electron 
gas at zero temperature. It is interesting to note 
that since, in the first order of magnitude relative 
to e2/tive, there is no damping of the plasma 
waves in this case, it is possible to determine 
the losses connected with the radiation of the 
plasma waves not with logarithmic accuracy, but 
accurate to terms of order e2/tive. These losses 
are determined by the contribution of the pole, 
located on the real axis, of the integrand of Eq. 
(27). We must go around this pole from above, 
and therefore 

CQ 

dE I _ \ wdx 2 _ 
-dt P1-8"- J dq·J-exp(-~w) D(q,w).o(q -4 .. D(q,,w)). 

0 

A substantial contribution to this integral is made 
by the region of small q "' {f); « Po. It is there
fore possible to assume w = vqx and to replace 
the difference in the numerator of Eq. (21) for 
II (q, vqx) by the derivative, np+q/2 - np-q/2 = 
( 8np I &p ) pq/p. In this case II is independent of 
q and is a function of x: 

D = ~ (I _ vx In vx + Po) . 
" 2 Po vx- Po 

It is necessary to integrate with respect to x in 
the limits from Po /v to 1, for when x < Po /v the 
imaginary part of II differs from zero. The inte
gration is elementary and when v » ve we get 

_ dE I = 4 1tne4 (In r:zv + ~) . 
dt pl • mv 2po 3 

(33) 

If the decelerating particle is an electron, the 
numerical factor in the argument of the logarithm 
in (32) should be modified because of the influence 
of the exchange effect. Formally, this effect mani
fests itself in the fact that now the interaction Ham
iltonian (2) .becomes 

H, = f ~ V qat ap,-q aJ.ap-q 
P?,q 

and an additional term ~p Vp-p'apap-q appears 
in the matrix element (4). In addition, an electron 
that has a large energy after collision should be 
considered as primary. As is known, allowance 
for the exchange effect leads to an additional fac
tor ../ e/8 in the argument of the logarithm. In
stead of Eq. (32) we obtain the following equation 
for the slowing down of the electron 
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--=--In +I dE 4 TOne• { m'/,vz } 
dt mv 41i Y2TOne2 · 

(34) 

Equation (32) can be obtained in the usual man
ner, by considering collisions with large mom en
tum transfer as paired collisions of particles, and 
expressing the contribution of transitions with 
small momentum transfer to the decelerating 
ability in terms of the dielectric constant of the 
plasma E (w) = 1 - (w0 /w )2• 

Equation (27) can be used to find the energy 
lost by particles that do not have too high a veloc
ity. It is easy to obtain a correction of order 
(ve /v )2 for Eq. (31). For this purpose it is 
necessary to calculate the integral in Eq. (30) 
with accuracy to terms of order ( ve /v )2• We 
can no longer use the limiting value (24) for 
IT ( q, w) in Eq. (31), but must put 

Il (q, w) = (nq 2 1 w2) (I + 3 q2 J ~w2). (35) 

The integrand of (31), with the value of IT (q, w) 
from Eq. (35), has a pole in the upper half-plane, 
and this must be taken into account in evaluating 
the integral. The final formula for the losses 
has the form 

_ dE = 4 TOne• {In 2 Mmv2 _ 2M + 3m } 
"t mv (M + m) n<ilo Mm~vz • (36) 

It is also interesting to examine another limit
ing case, when a heavy particle moves with ave
locity much lower than the thermal velocity of the 
electrons, v « ve, but greater than the mean 
velocity of the ions, v »Vi, and sufficiently 
large to satisfy the perturbation -theory criterion 
e2 /tiv « 1. In this case it is more convenient to 
rewrite Eq. (27) as 

We express Im IT in terms of (29), allowing 
for contributions from both electrons and ions. 
The expression for IT ( q, w) contained in the de
nominator can be replaced, neglecting terms of 
order ( v /v e )2, by IT ( q, 0 ) , which is expressed 
in terms of the Debye radius with the aid of Eq. 
(28). It is necessary to account here only for the 
electron loops. Allowance for the ion loop leads 
to a correction on the order of (vi /v )2• Equa
tion (37) becomes 

00 1 

dE - ' \ q2 I ( q ' - dt - 4 (2 rr~) ;, j dq (q2 + x•) 2 j dx vx- 2M) 
0 -1 

X { n, [- _1_ ( vx - _1_)2
] 

2m 1. 2m 

+ n,exp [- -~- (vx- q M + M, ) 2]} (38) 2M1 2MM1 .• 

Equation (38) can be obtained by considering paired 
collisions of particles, interacting as exp (- Kr )/r. 
This equality holds because the fast electrons have 
a chance to screen the field of the slower particle. 
The mean field of the particle moves together with 
the particle, without slowing down, and therefore 
in this limiting case the radiation of the plasma 
waves does not contribute to the energy loss. 

Neglecting terms of order of (vi/v)2, we ob
tain for the losses in collisions with ions 

(39) 

We calculate the losses due to collisions with elec
trons, neglecting terms of order (v/ve )2 and 
(m/M)(ve/v)2 

- ~~ /, =-} (2 7t~)''• ~v2n,e4 {In (8 m 1 ~1i2x)- C- I}, (40) 

where C = 0.58 is Euler's constant. Equations 
(39) and (40) contain the reciprocal Debye radius K, 

which is determined from Eq. (28) and differs from 
the corresponding value used in thermodynamic 
functions in that it is expressed only in terms of 
the electron density, rather than the density of all 
charged particles. 

In conclusion I thank V. M. Galitskil and A. B. 
Migdal for valuable advice. 
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