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Relaxation of nuclear spins in ionic crystals at room temperature is examined theoretically 
with account of optical vibrations of the crystal lattice. Numerical calculations are made 
for NaCl type lattices. The agreement with experiment is satisfactory. 

1. INTRODUCTION 

IN the present theory of spin-lattice paramagnetic 
relaxation the thermal lattice vibrations are con
sidered in the Debye approximation, i.e., only 
acoustic crystal vibrations are taken into account. 
However, the Debye method is meaningful only at 
low temperatures. At room temperatures there 
are sufficiently-excited optical vibrations at which 
the neighboring atoms move, on the average, in 
phase opposition and consequently their interaction 
varies more strongly than in acoustic vibrations. 
A disturbance causing transitions in the spin sys
tem will therefore be stronger, and this may no
ticeably affect the rate at which equilibrium is 
established between the spin system and the lat
tice. It is clear therefore that not only can the 
optical vibrations not be neglected, but in some 
cases the Debye model is not expected even to 
yield the correct order of magnitude of the spin
lattice relaxation time. This problem is best 
examined with the nuclear spin relaxation as an 
example. 

Pound1 has shown with a series of experiments 
that at room temperature quadrupole interactions 
can play a decisive role in the mechanism of nu
clear spin-lattice relaxation. The first theory of 
nuclear spin-lattice relaxation in crystals was 
proposed by van Kranendonk. 2 He considered the 
interaction between a nucleus having a quadrupole 
moment and the field of point charges surround
ing the ions. After calculating, in the Debye ap
proximation, the variation of the gradient of the 
electric field under the influence of the thermal 
lattice vibrations, van Kranendonk found the prob
abilities of relaxation transitions in the spin sys
tern. The spin-lattice- relaxation times T1, deter
mined with these probabilities, were found to be 
102 to 105 times longer than the experimental val-
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ues. Moriya and Yosida3 have suggested that in 
real crystals the quadrupole interactions are 
much stronger than in the van Kranendonk model, 
owing to the partially-covalent character of the 
atomic bonds. The values of T1 which they cal
culated differ from the experimental ones by a 
factor of 3 to 10. Wikner and Das,4 assuming the 
bond to be purely ionic, took into account the in
crease in the gradient of the electric field on the 
nucleus due to polarization of the electron shell 
in the field of the ions and of the nucleus. Com
parison with experiment led to results analogous 
to those obtained by Yosida and Moriya.3 

In the present paper we consider theoretically 
the spin -lattice relaxation of nuclear spins, due 
to quadrupole interactions, at sufficiently high 
temperatures. In Sec. 2 we obtain a more con
venient form for the spin-lattice interaction op
erator than that given by van Kranendonk. 2 In 
Sec. 3 we calculate the probabilities of the relax
ation transitions produced by optical and acoustic 
vibrations of a NaCl type crystal lattice. We 
consider the relations between the probabilities 
of the transitions and quantities that are measured 
experimentally in the study of the relaxation ef
fects. The comparison with experiment and the 
discussion of the results are treated in Sec. 4. 

2. THE SPIN-LATTICE INTERACTION OPERATOR 

We consider a purely ionic bond. As in refer
ence 2, we shall assume that the relaxing nuclei 
are in equivalent crystal fields and that we can 
neglect the influence of the magnetic dipole-dipole 
interactions on the quadrupole relaxation. Under 
these assumptions, we can consider the interac
tion between an individual nucleus and the electric 
field of the surrounding ions. Since this interac
tion is modulated by the thermal vibrations, tran-



172 B. I. KOCHELAEV 

sitions are induced between different spin states. 
We place the origin at the lattice site in which the 
nucleus under consideration is located, and direct 
the z axis along the external magnetic field H. 
That part of the Hamiltonian which describes the 
quadrupole interaction of the nucleus with the 
crystal field is written as the scalar product of 
two tensors, the nuclear quadrupole moment op
erator and the electric field gradient operator:1 

:ie = ~ (- It QIL (V' E)-IL, (1) 
J,L 

where 

Q0 = 21 (2~Cl__ 1) [3J;- I (I+ 1)], 

Q±1 =+VI 21 (2~Q__ 1) [(/ .. ± ilu) fz + Iz (/~±if~)], (2a) 

- -. /3 eQ A ' A 2 
Q±2- V 2 2/ (2/-1) [(fx±lfy) ], • 

1 iJEz 
(V' E)o = - 2 az ' 1 [iJEx . iJEy] 

(V'£)±1 = + y6 Tz ± t az ' 

1 [iJEx iJEy . 8Ex] 
(V'£)±2= Vii a:x-ay-±2t Ty . (2b) 

Here eQ is the quadrupole moment of the nucleus, 
I the nuclear spin, and I its operator. 

To obtain the spin-lattice interaction operator 
it is necessary to find the tensor components of 
the gradient of the electric field that results from 
the displacement of the ions by the thermal vibra
tions. If we introduce the coefficient Yoo, char
acterizing the degree of polarization of the elec
tron shell of the ion under consideration, the gra
dient of the electric field on the nucleus can be 
represented as3 

V'E = (1-&cr) V'E', 

where V'E' is the gradient of the electric field 
produced by the surrounding ions. The potential 
of this field in the vicinity of the nucleus is 

V = ~etl Rt. 
t 

(3) 

where et is the charge or' the t-th ion and Rt is 
the distance from its center to the nucleus under 
consideration. We denote the displacement of the 
t-th atom due to the thermal vibrations by llt• 
and the displacement of this atom relative to the 
central atom by St = Ut- u0• Considering that the 
relative displacements St are small compared 
with the interatomic distances, we expand V in a 
series of spherical functions 

V = '\.l ~ ~ (- 1 ( ___±:__ (..!!_)n 
LJ R 01 LJ 2n + 1 Ret 
t 17=0 

x ± Y: (6~, cp~) y;;-m (6k, cp~). (4) 
rr..=-n 

Here Rot is the equilibrium distance between the 

ions, e~, cp~ and &A, <Pk are respectively the 
angular coordinates of St and the projections on 
the t-th ion. Since we are interested in room 
temperatures, at which two-phonon processes are 
known to play the decisive role, the spin-lattice 
interaction operator should be quadratic in st. We 
need therefore consider only the term with n = 4, 
out of the entire sum of Eq. (4). 

To find the components of the electric field 
gradient tensor, it is convenient to change to new 
coordinates 

~±1 = =f (ex± iey) I y2, ~0 = e2 , (5) 

where eq is a unit vector along the q axis of a 
Cartesian system. Using the well known expan
sions of the gradient in spherical functions [see, 
for example, reference 5, Eq. (2.57)], we obtain 
the following expression for the tensor components 

xl}C(4, 1,3; m, q)C(3, 1,2;m+q,r) 
m 

Here C are the Wigner coefficients. The unknown 
components (V'E~) are 

(V' £')0 =- 41t V¥ L; ~~:i L; C (4, 1, 3; m, 0) 
t • ot m 

X C (3, 1, 2; m, 0) 

-. /7 e s2 
(v£')±1= =f81t V s~---4-- ~C(4, 1, 3; m, 0) 

t Ret m 

XC(3, 1, 2;m,± 1) Y;'± 1 (6~, cp~)Yi"m(6k, cp~). 

(V£')±2=-s!ty~L; e;:; L;C(4, 1, 3; m, ±1) 
t ot m 

XC(3, 1, 2; m ± 1, ±1) 

Y m+2 (c,i t) y-m (nt t) X 2 - Vs, Cfls 4 v R, CflR • (6) 

Using (1), (2a), and (6) we obtain an explicit ex
pression for the spin-lattice interaction operator, 



THEORY OF SPIN-LATTICE RELAXATION OF NUCLEAR SPINS 173 

corresponding to spin transitions from the level 
m to the levels m - 1 and m - 2 

' [ VT yi v4 yo + 3 y-1 X g-S-ls:_l 4- 5SoS-1 4 4SoSo 4 

The notation of Eq. (5) is extended here to vectors 
and vector operators: B±1 = 'f (Bx ± iBy)/-12, Bo =Bz. 
For the sake of brevity we omit the arguments of 
the functions YI[l(eA. cpA) and the summation index 
t in stw 

3. SPIN-LATTICE RELAXATION TIME 

We continue our calculations as applied to crys
tals with a NaCl type lattice. The displacement 
of the p-th atom in the l -th elementary cell, in 
the case of free oscillations, can be written as a 
superposition of waves 

u~ = Ap (a) exp (- iwt + iaR_~ I a), (7) 

where au is the wave vector, Rb is the radius 
vector of the equilibrium position of the p-th atom 
in the l -th elementary cell, and a is the shortest 
distance between lattice sites. 

If the Cartesian axes are aligned with the prin
cipal cubic axes of the crystal, 0' becomes 

a= cr 1 (ey + e2 -ex) + a2 (ez +ex -ey) + cra(ex + ey-ez), 

and the solution (7) is unique if a1, a2, and as 

range from -1r/2 to +7r/2. In this case the vol
ume of the region of variation of 0' is 2~. We 
assume that this region is a sphere having this 
volume. Then the maximum value of a is ao = 
(3~/2)1/3. Let us write down the number of nat
ural oscillations contained within an energy inter
val dE inside a solid angle of the wav~-vector 
space, dQ: 

(8) 

Here N is the number of elementary cells and p 
the density of the natural oscillations in the energy 
scale. For acoustic oscillations, dE has the 
simple form dE= odw = ovda, where v is the 
velocity of sound. The density p is then found 
for acoustic oscillations directly: 

For optical oscillations, we do not know the ana
lytic dependence of :.u on a. We can write approx
imately w = - ~w ·a/ a0 + w0, as can be verified by 
comparison with numerical computation of the nat
ural-oscillation spectrum (cf., for example, refer
ence 6). Here w0 is the frequency of the optical 
vibrations at a= 0, and ~w is the interval of 
frequency variation. Inserting w in Eq. (8), we 
obtain Popt = Na0a2/2~o~w. 

The probability of spin transition in combina
tion scattering of phonons is determined by the 
usual formula 

P(m, m + p.) = ~ 2; ~Pa(cr)p_a(cr') 
(X 

x [<m+r.J., n, n'[W[m, n+ 1, n'-1)[2 dQdQ'dE. 

The summation indicates that all the modes of os
cillations are taken into account. The energies of 
the emitted and absorbed phonons are connected 
by the relation ow = ow' + I J.1. I g{3H by virtue of 
the law of conservation of energy. Here I JJ.I g{3H 
is the energy corresponding to the transition be
tween Zeeman sublevels, n the quantum number 
of the lattice oscillator, and m the magnetic 
quantum number. 

To calculate the matrix elements that enter in 
Eq. (9), the displacements uf> must be expressed 
in terms of the normal coordinates q (a) 

U~x = ~ q" (:;) A~x exp (iaR_~1a). 
o.a 

The matrix elements of the oscillator coordinate 
q (a) are well known. Since our equations con
tain only the amplitudes of the relative displace
ments of the atoms, which depend little on a 

6 (this follows from the work of Tolpygo ) , we 
neglected this dependence. In calculating the 
probability of the transition due to optical oscil
lations, only the region directly surrounding the 
ions can be taken into account. The next nearest 
region is not of prime importance, since in that 
case the phase difference between the vibrations 
of the atoms of this region and those of the central 
atom is little and the change in the gradient of the 
electric field is small. In acoustic oscillations 
the contribution to the probability of transition 
from the next nearest region amounts to % of 
the contribution of the nearest neighbors. Taking 
this circumstance into account, and carrying out 
the corresponding integration over the wave-vec
tor space, we obtain the following equation for the 
transition probability per unit time 
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= ~ (eQ!2I (2/- 1)]2 (2m+ 1)2 (I- m) (I+ m +I), 

i < m + 2\ Q2 1 m ) 2 

== ~ [eQ/2/ (2/ -1)]2(/ -m-1) (I+ m + 2) (I-m) 

x(/+m+l) (10) 

L1 differs from L2 only in the factor 11/20. Here 
mo is the mass of the central ion, f the ratio of 
the mass of the central ion to that of the neighbor
ing ion, w 11 and w 1 are the frequencies of the 
longitudinal and transverse optical vibrations at 
u = 0, and vii and v 1 are the speeds of propa
gation of the longitudinal and transverse vibrations. 
It is assumed in the calculation that 11.6-wu/ u0 « 
2kT, and tivu/a « 2kT, which is true at room 
temperatures. 

Knowing the probabilities of the relaxation 
transitions, we can determine the spin-iattice re
laxation time. The relaxation of nuclear spins has 
been investigated heretofore mostly by the method 
of saturation of the nuclear magnetic resonance. 
One usually introduces here a time parameter 
T 1 ( ik), pertaining to the two levels at which res
onance is observed 

x = (I + g2~2H~Tdik) 1 n})-1 , 

where x is a saturation factor, equal to the ratio 
of the differences of the populations of the two 
levels i~ equilibrium state and in saturation, 2H1 

is the amplitude of the radio-frequency field, and 
T2 is the transverse relaxation time. In the case 
of a spin I = ~, T 1 ( - ~, ~ ) has the usual meaning 
of longitudinal relaxation time. Using the expres
sion given by Lloyd and Pake 7 for x in terms of 
the probabilities of the relaxation transitions, we 
obtain for T 1 ( - ! , ! ) , determined by saturation 
of the central peak of the nuclear-resonance spec
trum, the same expressions as in reference 3:* 

for I=% T1 = 1/P (1/ 2 , %) + 1/P (%,- %), 

for I = % T 1 = {. 1 
P (1/2. 3/2) + [1/P (1/., 5/.) + 1/P (5/2, 3/2)] 1 

(11) 

*Reference 3 contains a misprint in the expression for T 1 

in the case of I ~ 5/2: it is necessary to replace P(3/2, 1/2) 
in the second term by P(3/2, -1/2). 

For simplicity we have omitted here the indices 
that designate the spin levels. 

4. COMPARISON WITH EXPERIMENT AND DIS
CUSSION OF THE RESULTS 

The values of T 1 (in seconds ) calculated 
from Eqs. (10) and (11) are listed in the table to
gether with the experimental values. Columns 3 
and 4 contain for comparison the results of cal
culations made by others.3•4* 

Ion IExper-IR.efer-IRefer-1 This 
iment [ence 3 ence 4 Work 

Br79 in KBr 0.26 19.3 0,88 0.32 
1127 in KI 0.039 0.24 0.27 0.077 
Br79 in LiBr 0,028 0.20 0,086 0.031 

We determined the velocity of sound from the 
elastic constants8 and obtained the frequencies of 
the optical vibrations from the dispersion frequen
cies. 9 For LiBr we took w 1 = 3.5 x 1013 sec-1, 

since the literature gives data neither for the dis
persion frequency of this crystal nor for the Debye 
temperature e (in references 3 and 4, e was as
sumed to be 180° ). The values of .6-w were es
timated with the aid of the equations for the limit
ing frequencies of the optical vibrations of a dia
tomic chain, the quadrupole moments of the nuclei 
were taken from reference 11, while the values of 
Yoo were taken from reference 4. For the sub
stances considered by us, the contribution of the 
optical vibrations to the probability of relaxation 
transition is of the same order of magnitude as 
the contribution of the acoustic vibrations, where
as in the case of Br79 in LiBr this contribution 
is determined essentially by the optical lattice 
vibrations. Thus, the Debye model cannot be used 
to explain the relaxation effects of the spin system 
in crystals at room temperatures. Further refine
ment of the theory calls for, apparently, an exact 
determination of the amplitudes and of the spec
tral density of the natural oscillations of the lat
tice and for an accounting of the influence of the 
covalence effect on the relaxation. It is seen from 
the table that the influence of the covalence on the 
relaxation is insignificant. It is a maximum for 
KI and probably causes a certain deviation of our 

*In reference 3, the degree of covalence A was determined 
from the experimental values of the chemical shift. The 
authors did not have experimental data for KBr and, putting 
A~ 0.013, they obtained T 1 ~ 0. 77 sec. However, it follows 
from the measurements of Bloembergen and Sorokin10 that 
A ~ 0.0026, corresponding to the value of T 1 listed in the 
table. For 1'27 in KI, the value of T 1 is given in accordance 
with reference 10. 
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results from experiment in this case. 
It is interesting to note that our equations give 

a higher value of T 1 than experiment if the given 
substance has other spins, which relax more 
rapidly. For example, in the case of Na23 in NaCl 
the value of T1 is more than one order of magni
tude greater than the experimental value.* In this 
case, apparently, the most effective is another re
laxation mechanism, in which the energy of the 
excited spin is transferred rapidly to the relax
ing spins, owing to magnetic dipole-dipole inter
actions, and is transferred from them to the lattice 
vibrations. This relaxation process is analogous 
to that discussed in references 13 -15. Prelimi
nary estimates confirm this assumption. 

In conclusion, the author expresses deep grati
tude to S. A. Al'tshuler for suggesting the topic 
and for interest in the investigation. 
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