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An investigation is made of the small oscillations of a plasma sphere of infinite conductivity. 

VEKSLER 1 and Knox2 have called attention to the 
possibility of using ac electromagnetic fields for 
the stabilization of hot plasmas. 

Below we consider a uniform gaseous sphere 
with sharp boundaries located in a quasi -stationary, 
spatially homogeneous electromagnetic field 

Hh = H 0 exp (iD.i/ t), Ek = £ 0 exp (iSJf t), (1) 

( k = X, y' z ) where the frequencies nM and n~ 
are all assumed to be different from each other. If 
the skin effect is large the ac field does not pene
trate the plasma, the electrical conductivity of 
which is assumed to be infinite. The time-average 
of the pressure at the surface of a weakly deformed, 
ideally conducting sphere in an ac field (1) has been 
determined in reference 3: 

9H2 2 oo 1 P (& rp) = _o [(I_ 2 ~)' --'-- "' "' (21-1) (1- 1) 
, 32"' ' H2 I 4.1 LJ 21 + 1 

0 !='2 m=-l 

( 41(1+1)£~,) ,,, J 
X 1- 3 !=1 H~' X1rrX1 (&,rr). (2) 

Here the azm are the coefficients in the expan
sion, in spherical functions, for the radial deviation 
from a sphere of radius r 0 of points at the surface 
of the plasma: 

oo I 

or(&, rr) / ro = ~ ~ XtrrXt (&, rp). 
l-=Om=-l 

For equilibrium the internal gas kinetic pressure 
at the boundary of the plasma must be equal to the 
electromagnetic forces: 

(9H~/ 32"') (1- 2£~/ H~) = p > 0. 

Since there is no electromagnetic field inside 
the bunch, in analyzing small deviations we start 
with the usual hydrodynamic equation (neglecting 
viscosity). Then, a monochromatic component of 
the displacement potential 

;(r, &, cp)eiwt = VCD(r, &, y)eiwt 
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of an individual particle obeys the following wave 
equation in the linear perturbation approximation: 

w2cD + c2 t.<D = 0, 

where the adiabatic velocity of sound is c2 = yp/p. 
The particular solution 

cD1m (r, &, rp) =canst ·r-'f,Jt+'h (w I c) Y7' (&, 9), (3) 

in which the frequency w is still arbitrary, must 
satisfy the boundary condition 

_ {d'rl:} _9H~(21-1)(l-1)t{~'} 
I P 1\ ~ r ~ r, - 32n 21 + 1 l r 

0 r-=fo 
( l 2), 

f (E 'H)= I _i_ l(l + 1) E~ 
l o I o 3 l - 1 H2 ' 

0 

(4) 

which states that the Lagrangian variations of the 
hydrodynamic and electromagnetic pressures at 
the surface of the perturbed sphere must be equal. 
Converting from the displacement amplitude to the 
potential in Eq. (4) we obtain the dispersion rela
tion 

,, 1~ = F (w) = 9H~ ~ (21-1) (1-1) f vT; 
1 - 32"' "[P'o 2/-t-1 1 Jl+'f,(wro/c) 

{_cl_ Jl+'/, (wr I c)} 
X dr Vr , 

r -r0 

(5) 

For radial spherically symmetric oscillations of 
the sphere ( l = 0) and reciprocating displacements 
of the sphere as a whole ( l = 1 ) the internal pres
sure remains unchanged. Consequently we have 
the boundary condition 

Jl+'f, (w0 I c)= 0, l = 0, I. (6) 

The roots of the transcendental equations (5) and 
(6) determine the spectrum of eigenvalues wz for 
a given perturbation (3). The absence of solutions 
with :u2 < 0 for positive fz indicates that the 
bunch is stable against perturbations character
ized by wavelengths A.s = 2nT0 /l along the surface 
of the sphere for which fz ( E 0 /H0 ) > 0. Instability 
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is possible for a perturbation characterized by 
fz < 0. In this case the solution with w2 < 0 sig
nifies random deviations which increase exponen
tially in the course of time. In the particular case2 

E0 = 0 and fZ = 1 a spherical plasma has internal 
stability against arbitrary perturbations. The lim
iting case c - oo in Eq. (5) gives the simple 
formula 

2 ~ 9H~ __!___ (2/-1)(l-1)l f 
(J) I - 321t 2 2/ + 1 I' 

P'o 

which characterizes the dynamics of a highly con
ducting incompressible fluid.* The equilibrium 
criteria formulated do not apply when A.s be
comes comparable with the skin depth (for large 
values of l) since a perturbation of this kind is 
not compatible with the original assumption of in
finite conductivity for the deformed sphere. 

We have discussed here the behavior of a 
plasma sphere when the pressure of the external 
electromagnetic field is constant (time average). 
In order to calculate the effect of the alternating 
component of the high -frequency field we consider 
rapid motion of a plasma produced, for example, 
by the z component of the magnetic field ( E0 is 
assumed to be zero). As before we assume that 
azm « 1. The magnetic pressure 

12/3 (12- mZ) + 212 (12-3m2) -18/ (12-m2)+ 1012- 9m2 
Aim = (21 + 3) (21 + 1) I (21- 1) (7) 

is computed in the same way as for (2). In Eq. (7) 
we separate out the harmonic time component 

~ p [ 0 
PHz (-&, cp, f) = 3 1 - Y 2 

co I 

+ ~ ~ AzmOCzmY/ (-&, cp)J COS 2D2t, 
1~2 m~-l 

and, in the acoustic approximation, obtain the 
boundary condition for the displacement potential 
t ( r, J, cp, t) = \7'11, which is governed by the wave 
equation c26.'1J = a2'1J/8t2: 

-cos 2D2 t for l = 0; 

Y~ COS 2Qzf - (-3~52 COS 2Qzf -; _\)_) _!_ {()'I"} 
5 fo or r~r, 

for l = 2, m = 0; 

- (Azm COS 2Qzt + 3 (2!- 1) (l- 1)\ _!_{()'I"} 
21 + 1 ) ro or r~r, 

for l = 2, m =1= 0; l > 3. (8) 

*The lowest limiting frequency found (w2 ) is approximately 
the same as that determined by Eq. (5) in the general case of 
a compressible fluid. 

Whence we find the solution for l = 0: 

where the following notation has been introduced: 

2.Qzr/c=v, 2D2r0 /C=v 0 • 

An investigation of the other equations ( l 2: 3; 
l = 2, m .,c. 0) by the method of successive approxi
mations shows that the oscillations are stable for 
frequencies characterized by !Jz > wz. Unstable 
solutions are possible close to the values !Jz = 

wz/n, where n = 1, 2, 3, ... (parametric reso
nance). In the region of stable solutions for spher
oidal perturbation ( l = 2, m = 0) the motion of the 
sphere boundary is given approximately by the ex
pression 

5 Fz(2Qz) o 
9 F2 (2Qz)- (2Qz)2 Y 2 (-&, <p) COS 2Qzt' 

~r (ro, t) 

ro 

Fz =/= n2 (2D2 )2. 

By proper choice of the frequency !:2z it should be 
possible to meet the requirements for small in
duced surface oscillations with respect to simple 
Y0 and Y~ -deformation. For example, with x0 

» 1 the oscillations of the volume and the shape 
of the plasma are insignificant [ r 01 I tr < r 0, t) I max 
« 1] if the inequality I v0 cot v0 -11 « v5 is sat
isfied. 

If we assume that the plasma is incompressible 
the boundary conditions in (8) reduce to Mathieu 
equations (with a right-hand member in the case 
of a spheroidal deformation) 

d2 Gtzo ( 6 2 2p cos 2T 
~+ a2 + I q20 COS c)<Xzo= 2 2 , 

3PQz'o 

where 

The motion of the surface of an incompressible 
liquid is stable with respect to the first three har
monics ( l = 2, 3, 4) for example with !Ji ~ p/3pr5. 
In general, with increasing values of m and l the 
instability zones become smaller. 

The stability criteria for high frequencies in 
the presence of an electric field may be obtained 
in a similar manner if, in place of·Eq. (7), we use 

3£2 i oo I 
PEz (-&, Cf', t) =- 4: [ 2 + yg + ~ ~ SzmOCzmY/], (9) 

1~2 m=-1 

where 
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4!3 (!2-m2)+ 812 (!2-m2) -l (12-5m2)- 6 (12-m2) -l 
(2/-1) (21 + 1) (2/+ 3) 

We can now consider the qualitative features 
of the physical results. First we consider the 
mechanism for stabilization of a plasma by a mag
netic field. The application of one field (for ex
ample Hz) causes, in addition to the anisotropic 
pressure ,P ( J) = 3H~ ( 1- Y~ )/327!", an instability 
for perturbations characterized by m = l (cf. 
Eq. (7)]. In these deformations the magnetic force 
lines which bend around the sphere along the merid
ians, are, (without twisting) spread apart at pro
truding regions of the surface and concentrated in 
regions of indentation; as a result a magnetic 
pressure differential is created, which tends to 
increase the deformation. With m "' l another 
effect predominates; this is the increase in the 
magnetic pressure as a consequence of twisting 
of the force lines, which provides stability for all 
simple perturbations. A rapid change in the direc
tion of the field, realized above by superposition of 
three fields, breaks up the correlation of the mo
tion produced by the instability with m = l, and 
the field configuration; rotation of the field leads 
to a time average dynamic stability with ;respect 
to a weak perturbation.* The application of elec
tric fields only weakens the stability of the spher
ical shape. This is because the electric force 
lines formed at the induced surface charges are 
concentrated in surface regions of high curvature 

*The containment of a plasma by a rotating magnetic field 
has also been considered by Butler et al. 4 

and any deformation leads to an additional nega
tive electric pressure which tends to increase 
the deformation [cf. Eq. (9)]. 

In an inhomogeneous magnetic field a plasma 
of infinite conductivity is diamagnetic; in an in
homogeneous electric field it behaves like a pure 
dielectric. Thus, the average force acting on the 
sphere is given by 

f = r~ grad (2E2 - H2) 14. 

By satisfying the stability requirements of the 
position of the sphere as a whole as well as those 
for volume and shape it is possible to make an 
isolated plasma stable in a given region of the 
external field .. 

The author is indebted to M. S. Rabinovich for 
valuable discussions of the present work. 
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