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Stationary convective motion of a conducting fluid between vertical parallel plates in a mag­
n:i3tic field is considered. An exact solution of the magnetohydrodynamic equations is ob­
tained for the case of a constant vertical temperature gradient. The critical value of Grass­
hof' s number is determined for the case when the temperature of both plates is the same. 

l. The free convective motion of a conducting 
fluid between vertical plates maintained at a con­
stant temperature in the presence of an external 
magnetic field was studied in detail by Gershuni 
and Zhukhovitskil.1•2 In this paper we shall gen­
eralize the results referring to stationary flow 
to the case when the temperature varies in the 
vertical direction. We shall also discuss the 
problem of the superposition of free and forced 
convection, thereby generalizing the well-known 
solution due to Hartmann. 3 

We consider the case of stationary convective 
motion of a fluid between vertical infinite plates 
x = ± o, whose temperatures are respectively 
T_(z) and T+(z). We take the flow lines to be 
parallel to the plates, i.e., to the z axis. An 
external homogeneous transverse magnetic field 
Hx = H0 is applied to the plates. 

We write the general equations of magnetohy­
drodynamics :4 

~ + (vV)v =- ~ V (P+ ~~') + vV2 v + 4~P (HV) H- ~gT, 
aH c2 • 

at + (vV) H = (HV) v + 4'"afL V H, 

~~ + v'VT = av•r, 
div v = 0, div H = 0, 

(1.1) 
(1.2) 

(1.3) 

(1.4) 

where T is the temperature, p is the pressure, 
v and H are the velocity and field vectors, p, v, 
J.l-, a, a, {3 are, respectively, the density, the kine­
matic viscosity, the magnetic permeability, the 
conductivity, the thermal conductivity, and the co­
efficient of thermal expansion of the fluid. The 
problem under consideration has an exact solution 
of the form Vx = vy = 0, Vz = v (x), Hx = Hx(x), 
Hy=O, Hz=Hz(X), T=T(x,z), p=p(x,z). 
If we take the positive direction of the z axis in 
the opposite direction to the force of gravity vee-
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tor g, we obtain from Eqs. (1.1)- (1.4), the sys­
tem of equations 

1 a r fLH') a2v . fLHxaHz 
0 = - Paz \_P + ·g;- + v ax• + 41tp ·ax + ~gT' 

:x (P + fL~') = 0, (1.5) 

O=H _!}!!._ -~a•Hz 
X ax + 41tafL ax2 ' 

(1.6) 

(1. 7) 

where Hx = const, which follows from the equa­
tion div H = 0; g = -gz. 

Since the component of the field normal to the 
boundary must be continuous at x = ± o, we have 
Hx = H0• On substituting T from (1.5) into (1. 7) 
and on differentiating the resultant equation with 
respect to z we see that when v ~ const we nee­
essarily have (82/az2 )(p + f.I,H2/87r) = const and, 
consequently, oT /oz = A = const (see reference 
5). From this it follows that T = Az + T0 (x). 
The expressions for the given plate temperatures 
may now be written in the form 

T_ (z) = Az +To(+ o), T+(z) = Az + T 0 (-o). 

For the sake of definiteness we assume T_ ( z) < 
T + ( z). Then, on taking T0 ( 0) as the reference 
point on the temperature scale, we have 

T- (z) = T (z, o) = Az- T Wl• 

T + (z) = T (z,- o) = Az + T W2• (1.8) 

where Tw1 + Tw2 is the temperature difference 
between the plates which remains constant along 
the z axis. We shall subsequently use formulas 
(1.8) as the boundary conditions for the tempera­
ture. 

Over the boundaries (at x = ± o ) the conditions 
of absence of slipping and of the continuity of the 
tangential component of the vector H must also 
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be fulfilled, and reduce to the equalities 

v(±'O) = Hz(±'O) = 0. (1.9) 

In addition we shall assume that the flow of 
fluid over the cross section of the gap between the 
plates is specified 

II 

Q = ~ v (x) dx. 
-II 

(1.10) 

If Q = 0, then Eq. (1.10) will be the condition 
that the lines of flow are closed, and the flow is 
free, since it will be due only to the force of buoy­
ancy. However, if Q ""' 0 then the flow will be 
mixed, and forced convection will be superimposed 
on the free convection. 

We now introduce the following dimensionless 
quantities 

~=xi'O, C=zlo, u=volv, h=H2 1H0 , 

q = po2 I pv2 , 9 = T I Ao = ~ + 60 (;), 

P=v,'a, Pm=4ltcrvlc2 , M=(p.H0olc)Vcr!pv, 

G=~gAo4 lv2 , (1.11) 

where P and Pm are the ordinary and the mag­
netic Prandtl numbers, M is the Hartmann num­
ber, G is the Grasshof number. In terms of these 
new variables, the equations and the boundary con­
ditions of our problem assume the following form 

where 

aq• a2u M2 ah , 
0 = - ar + a;2 + p m ~ --;- oa, 

0 _ !!!!:._ _)__ ~ a2h 
- a; ' pm a;2, 

ae 1 
u ar = p t1a, 

1 

aq• 
a~= o, 

u(±l)=h(±l)=O, Q'= ~ u(;)d;, 
-1 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

q'=q+M2 (h2 +I);2Pm, Ow;=Twt!A'O, Q*=Qiv. 

Further analysis of our problems will be based on 
the system of equations (1.12) - (1.15). 

2. In order to solve the system of equations 
(1.12) - (1.15) we substitute the expression () = 
t + 80 ( ~) into the first equation of (1.12) and into 
(1.14). We then obtain 

aq* , a2u . M2 ah 
0 c= -a[-; a;2 --rPm a; + G~ + 060 , (2.1) 

1 a2e, 
U=p~· (2.2) 

On the one hand, since u and h do not depend 
on ?;, it follows from (2.1) that Gt- Bq*/Bt = D = 
const and 

q' ~= GC" I 2-- D~ + Dl (~). 

The second equation of (1.12) immediately shows 
that D1 = const 

q' (~)- q' (0) = GC2 I 2- DC (2.3) 

On the other hand, on eliminating the unknowns h 
and 80, from Eqs. (2.1), (2.2), and (1.13) we obtain 
the equation 

utv- M2u" + GPu = 0, (2.4) 

whose general solution is 

u = C, cosh m.; + C2 sinhm,; + C, coshn,; + C4 sinh n.;, (2.5) 

where m, n are in the general case complex 
parameters: 

m = [M2 1 2 _J VM 4 14- GP]'1' I I I ' 

n=[M2 12-VM4 !4-GP]'I'. (2.6) 

Now with the aid of Eqs. (1.13), (2.1), and (2.3) 
we obtain in turn 

h __ p (c sinh mi; ___:_ C cosh mi:; , C sinh ni; 
- tn 1 l!l 1 2 m I a n 

' C cosh ni:; C t C ) . T 4--n-- 5>- 6 , 

90 = ~ ( C,n2 coshm,; + C2n2 sinhm,; + C,m 2 coshn,; 

+ C4 m2 sinhn,;- M'C, - D). 

(2. 7) 

(2.8) 

For the derivation of the last formula we made use 
of the obvious equality m 2 + n2 = M2• 

On satisfying conditions (1.15) we obtain seven 
equations for the determination of the constants 
Ci (i = 1, 2, ... , 6) and D. 

Let us dwell on certain pecularities of this 
system, which are connected with the boundary 
conditions of the initial problem. 

a) In the case of free convection with the two 
plates unequal in temperature, i.e., for Q* = 0, 
8w1 + 8w2 ""' 0, the system has a unique solution 
for all values of M and G. 

b) In the case of free convection with the tem­
perature of the plates the same, i.e., for Q* = 0, 
8w1 + 8w2 = 0, the system has a solution only when 
a definite relation exists between G and M. The 
smallest possible value of G characterizes the 
threshold of convection. 

c) In the case of mixed flow, i.e., for Q* ""' 0, 
the system has a unique solution for arbitrary G 
and M. 

We shall now discuss each one of these problems 
separately. 

3. In the case that Q* = 0 and 8w1 + 8w2 ""' 0, 
we first find that C1 = C3 = C5 = D = 0, so that the 
temperature distribution is expressed by means 
of an odd function. Therefore for the case of free 
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stationary convection we should take Bw1 = Bw2 = Bw. 
Then on finding the constants C2, C4, and C6 we 
obtain the following formulas for the velocity, for 
the induced field component, and for the tempera­
ture: 

oew 'sinh m~ sinh n~ \ 
U = m2 -n2 ~sinhm- sinh n)' (3. 1) 

h= PmG6u, (coshm-coshm.; _ coshn-coshn.;\ (3 .2) 
m2 -n2 msinhm nsinhn )' 

e =~+eo m = c + ~(n'sinhm.; - m2.sinhn.;). (3.3) 
m - n s1nhm smhn 

From these formulas it is possible to obtain the 
well-known result of reference 1 by means of a 
limiting transition for A__.. 0, when m---- M and 
n---- 0, taking into account the fact that GBw = 
{JgT wr} I,}. Moreover, by noting that in the case 
where the ratio M4/41 G I P increases without limit 
we have m/M __.. 1 and n---- 0, it can be easily 
shown that in this case the values of u ( ~ ) , h ( ~ ) , 
and e0 ( ~) approach asymptotically the corre­
sponding expressions found by Gershuni and 
ZhukhovitskiL Therefore when M4/41 Gl P » 1 
their conclusions with respect to the existence of 
a boundary layer, the behavior of the thermal flux, 
and of the induced field are approximately valid. 

If the ratio M4/4GP is close to unity, then by 
means of a limiting transition with m---- n it is 
possible to obtain from (3.1)- (3.3) the following 
approximate formulas: 

oew 
u=? . h 2 (,;coshn.;sinhn -sinhn.;coshn), (3.4) 

... Jl s1n n 

PmG6w . . . 
h :::::; 2 3 . 2 ( ( smh n - .; s1nh n.;) n smh n 

n smh n 

- ( cosh n - cosh n ,;-) ( sinh n - n cosh n ) ] , 

( 
n .;cosh n.; sinhn - sinh n.; cosh n 

6 = ~ + ew " ------. ------
£..; s1nh2n 

_ sinh n.; J. 
sinhn ; 

(3.5) 

(3.6) 

On investigating Eq. (3.4) we find that the extrem­
um points of the velocity profile satisfy the equa­
tion 

n; tanh n; = n coth n- I, (3. 7) 

whose solution tends to ~ = ± 1 when n __.. oo. This 
proves the formation of a boundary layer also in 
the case of comparable values of M4 and GP. 

4. When the temperature of the two plates is 
the same and Bw = 0, free convective motion is 
possible only when a certain relation holds be­
tween M and G. This relation consists of the 
vanishing of the determinant ofthe system of 

equations with respect to Ci and D. By bring­
ing it to diagonal form we obtain 

o • h . ( sinh m h sinh n \ O (m--n2)sm msmhn coshm---cos rz--1=. 
IL tiL I 

. (4.1) 

The only family of solutions of this equation which 
leads to a nontrivial solution of the problem is 
n = ik7T (k = 1, 2 ... ), where G must be negative. 

Thus, if G > 0, when the temperature increases 
in the direction of positive z, the equilibrium 
of the liquid at rest is always stable. In the oppo­
site case, when G < 0, the equilibrium is stable 
onlyfor ln2 1 <~,i.e., for IGPI < 1r2 (M2 +~). 
In the case GP = -7T2 (M2 +1r2 ), stationary lami­
nar flow is possible, characterized by the formulas 

u = C;c sin ;c;, h "" CPm {cos ;ce + 1), 

0 =~-PC sin r:;, 
'"' 

(4.2) 

where C is an arbitrary constant. 
The formula obtained above for the dependence 

of the critical value of the number G on M con­
firms the fact that the presence of a magnetic field 
significantly postpones the beginning of instability 
of the equilibrium. This result naturally applies 
only to the case of plane motion. 

5. Finally, we consider the case of mixed flow 
when the quantity Bw1 + Bw2 is arbitrary, while 
Q* ;" 0. 

In accordance with this, the .solution of our 
problem, based on Eqs. (2.5), (2. 7), and (2.8), 
assumes the following form 

U= 
mnQ* (coshm coshn.;- coshn coshm.;) 

2 (m coshm sinhn- n coshn sinhm) 

1 G(flw1 +6u,2) (sinhn sinhm.;- sinhm sinhn.;) 

·r 2 (m2 - n 2) sinhm sinhn 

[ 
Q* (m cosh m sinh n.; - n cosh n sinh m.;) 

h=-Pm 
2 (m coshm sinhn- n coshn sinhm) 

G (6w1 '- 6w2) ( n sinh n cosh m.; - m sinh m cosh n.;) + .. · 
2 mn (m'- n') sinhm sinhn 

Q'~ G (6Wl + ew2l 1 
- 2 - 2 (m2 -n2) mn (n coth m- m coth n~, 

1 [mnQ* (m2 coshm coshn.;- n 2 coshn coshm.;) 
fl=C+-a 2 (m coshm sinhn- n coshn sinhm) 

G (6w1 + 6w2 ) (n2 sinh n sinh m.;- m2 sinh m sinh n ,;) 
+--~~~---------------------

2 (m 2 - n 2 ) sinhm sinhn 

(5.1) 

(5.2) 

:nn (m2 - n2) Q* G (6W2- ewl) J (5.3) 
2 (m tanh n - n tanh m) + 2 • 
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When G- 0, Owi- 0, the formulas (5.1) and 
(5.2) reduce to the well-known solution of Hart­
mann's problem.3 
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