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The coupling constant is expressed in terms of the proton mass in the second approximation of 
the Tamm-Dancoff method. The formulas obtained can be used in the case in which the Lagran-
gian is an arbitrary linear combination of the five basic invariants. 

CALCULATION of various physical quantities in (OnMOn)ct!l=O~yMys0s,8 
the theory with the Lagrangian 

( 1) 

requires a knowledge of the coupling constant l. 
Various methods exist for its determination: from 
the meson-nucleon interaction, 1 from the mass of 
the 7T meson, 1• 2 and so on. In the present paper we 
shall determine it from a calculation of the mass of 
the nucleon. 3 

The equation for a Fourier component of the 
nucleon wave function, 

(2) 

can be derived in the same way as in the paper of 
Heisenberg, Kortel, and Mitter.3 It has the form 

cji (p) =- 3 (~:) 8 G (p) ~nCmCnOm ~ d4qd4r 

:< {G (p + q -r) OnS(q) OmS(r) 

- G (p + q- r) Sp OnS (q) OmS (r) 

+ S(r) OnS(q)Om G (p + q- r) 

- S (r) Sp OnS (q) OmG (p + q- r) 

- S (r)On G (p + q- r)OmS (- q) 

+ S (r) SpOnG (p +q- r) OmS (r)} OncJi (p). (3) 

In this integral the path is taken around the poles of 
the Green's function 

(6) 

we can reduce all the terms of Eq. (3) to calculations 
of traces: 

\d4qd4r • • • 
x )rr;- {OmSOk Sp (Q- i) Om (R- i) Ok 

+Om (R- i) OkSp (Q- i) OmSOk 

+Om (R- i) Ok Sp SOm ((~ + i) Ok} cji (p) 

[4x8 G ~ 'i d4qd4r ~ ( 1 ) 
=- 3 (2n)8 (p) fi!,. CmCn ) ~T 4 Ank- Onk 

X {OmSOk[Sp OkQOmR- i Sp OkOmR - i Sp ok QOm 

- Sp OkOm] +Om (R - i) Ok [Sp OkQOmS- i Sp OkOm S 

+ i Sp OkSOm + SpOkSOmQD 4 (p). (7) 

Here we have for brevity introduced the notation 

N1 = (p + q-r)2 q2 (q2 + x2)r2 (r2 +x2). (8) 

The calculation of the traces is based on the fol
lowing observation: since the trace of any of the 16 
Dirac matrices, except the unit matrix, is zero, 
SpOkyJ.L Omyv is different from zero (and is then 
equal to 4) only if Ok = Yv OmYJ.L = Om1 • Thus we 
have 

(9) 

G ( '- - r) - (p + q- r)"" - S 
p, q -"("-(p+q--r) 2 (p+q-r) 2 

and the propagation function 

(4) Owing to the factor Okm1 the sum over k can be 
found; in doing so we must keep in mind that Anm1 
= Anm. Thus we have 

:><' (. I q ) 
S(q) = q2(q2+:><2) X ;.v-i 

)(3 ' 

= q"(q"+:><") (Q-i) 

as prescribed by Feynman's rules. 
Using the identity4,5 

(5) 

135 

= (Anm-40nm)ROmQ• 

Similarly, 

(10) 

~ (~ Ank- Onk )okSp OkQOm =- (Anm' -4onm•) OmQ. (11) 
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where the index m' comes from the matrix om' = 

om'Yv • Multiplication of the matrix om by 'Yv 
transfers it from one class to another, the corre
spondence being 

Om: S V T A P 
Qm': V T A P A 

In Eq. (7) the first and fourth terms in each set 
of square brackets give traces of the first type; all 
the other terms give traces of the second type. Ap
plying Eqs. (10) and (11), we reduce the sum over k 
to the form 

(Anm- 41lnmHOmSROmQ- OmSOm + Om(R- i) SOmQ 

+ Om(R- i) Q OmS]- (Anm'- 41lnm') [ -iOmSROm 

-iOmSOmQ- iOm (R-i)SOm+ iOm(R-i)OmSJ. (12) 

The expressions in square brackets can be sim-
plified if we use the formulas 

OmRSOm+ OmRSO m = 2 (RS) OmOm = 2 (RS) Ams. 

OmSOm =SAmv (13) 

and note that the momentum integrals in Eq. (7) are 
invariant under the interchange q :;:!:- r, which 
makes QR-- RQ. This enables us to use here the 
equation 

QR = (QR). (14) 

Thus Eq. (12) can be reduced to 

(Anm- 41lnm) [2Q (RS) Ams + S (QR) Ams - SAmv 

- 2i (QS) Amv] - (Anm'- 41lnm•) [- 2i (RS) Ams 

-2i(QS)Amv- SAmv+SAms] 

= a1S + 2a1i (QS) + b1S(QR), (15) 

where 

a1 =- Amv(Anm- 4onm) + (Amv- Ams) (Anm'- 4onm•). 

b1 = 3Ams (Anm- 4onm)· (16) 

Here we have used the equality of the momentum 
integrals with integrands S(QR) and Q(RS), and in 
some terms have made the interchange q :;:!: - r. 

Substitution of Eq. (15) in Eq. (7) gives 

[4x6 
~ (p) =- 3 (2rc)8 G (p) 

As is clear from the derivation, the terms in 
Onm have come from the terms in Eq. (3) that con
tain traces. A characteristic peculiarity of Eq. (17) 
is the presence in it of only two (and not three) in
dependent quadratic combinations of the coefficients 
Cn· 

It is well-known that the way the Lagrangian is 
written in Eq. (1) is not the only possibility.4 Inter
change of two operators I{; in the expression under 
the sign of the normal product, followed by applica
tion of Eq. (6) brings the nonlinear term to the pre
vious form, but with different values of the con
stants: 

(19) 

A consequence of this is the fact that of the five pos
sible invariants only three are linearly independent. 

It can be verified that the expressions (18) for 
the quadratic forms a and b are invariant with re
spect to the transformation (19). This property is 
possessed by the linear combinations 

B~ = ~C~ (Akt-4okz)= -~- ~ CnAnk (Akt - 4okt) 
k k,n 

=~Cn (Anz - 4onz)=Bt (20) 
n 

(the orthogonality of the coefficients Ank has been 
used). Writing Eq. (19) in the form 

, I 
Ck=- 4 Bk-Ck, (19a) 

we see that this transformation brings the quadratic 
form (18b) to the form 

' 3 ~ 2 "\' b = -4LJBmAms-3LJCmBmAms 
m m 

(21) 

It can easily be shown that the first term in this 
formula is twice the second, so that the invariance 
b' = b holds. Along with this, Eq. (21) makes it pos
sible to give for b the obviously invariant expres
sion 

b =- ~~B;.Ams 
B m 

X ~ d4~:r [aS+ bS (QR) + 2ai (QS)] ~(p), (17) =- f (B~ + 4B~ + 6B} + 4B~ + Bp). (22) 

with 

a= ~ CmCn [- Amv (Anm- 4onm) 
m,n 

+ (Amv -Ams)(Anm•- 4onm')] 

= ~Cm [- BmAmv + Bm· (Amv- Ams)J. 
m 

b = 3 ~ CmCnAms (Anm- 4onm) = 3~CmBmAms· 
m,n m 

(18a) 

(18b) 

The quadratic form (18a) can be handled in a 
similar way; for this purpose it is convenient to 
rewrite it in the form 

a= ~ Cm (Bm·- Bm) (Amv- Ams)- b ;3. (23) 
m 

The first term of this expression is also changed 
by the transformation (19a) into two terms, one of 
which is twice as large as the other. We get fin
ally 
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a= - ~ ~ Bm (Bm:- Bm)(Amv- Ams)- b/3 
m 

1 ' ' ' ' = 4 (3BvBv + 3BTBT + BABA + BpBp)- bj3 (24) 

Here 
(24a) 

The values of the constants a and b for the pure 
interaction types are given in the table. 

Inter
action 
type 

s 
v 
T 
A 
p 

a 

3 
-12 

0 
20 

-1 

b 1 (47t/><l)· 

-9 2.897 
-72 5.078 

-108 4.738 
-72 7.644 
-9 1.665 

The further treatment of Eq. (17) consists of the 
calculation of the momentum integrals. For this 
purpose let us introduce the following invariant 
functions of the momentum p (private communica
tion from H. Mitter). 

--S=--pM --~ d4qd4r ~ "' ~ ( p2) 
Nl Y.2 J<.2 ' 

~ d4qd'r ~ "4 ~ ( p2 ) --S(QR) =- -pL --
Nl ~ ~ ' 

(25) 

With these and the relation G(p) = p/p2 , we rewrite 
Eq.(l7) in the form 

1 ( Y./ )4[ ( p2 ) ( p2 ) ~(p) = 3 4~, aM - .,2 +bL - X2 

(26) 

Squaring this equation, we bring it to the scalar 
form 

~ (~)' 4 [aM (- _f_) + bL (- !!____) 
3 \47t Y-2 x2 

+2a-./x2 N(-L)] =1. - v --p2 ;<_2 
(27) 

Since p is the momentum of the proton, 

(28) 

and from Eq. (27) we find 

+2a2-N(m~)] · 
-- mP .,2 (29) 

From this it is clear that the value of the constant 
(4:rr/Kl) 4 depends essentially on the choice of the 
quantity K appearing in the propagation function. 
Values of the constants for K = mp are shown in 
the table. 

In conclusion I express my sincere gratitude to 
Prof. W. Heisenberg and Dr. H. Mitter for their 
interest in this work and for supplying numerical 
data omitted from their paper. 3 
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