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Through a transition from the energy operator to the S matrix the compensation equation 
for dangerous electron diagrams is brought into a symmetric form, which is expressed in 
terms of the usual Green functions. In the high-density electron gas approximation the 
summation of the Cou~omb singularities in the kernel of the compensation equation is per­
formed by the renormalization group method. In the lowest approximation the result of the 
summation is the same as the formulas obtained previously by qualitative means. 

1. THE SYMMETRIC COMPENSATION EQUATION 

THE compensation equation for the dangerous 
electron diagrams in the theory of superconduc­
tivity can [according to Eq. (5.19) of the book by 
Bogolyubov, Tolmachev, and the author1 ] be 
written in the form 

0 

~ < o2R . "> e''((k) (t+t'ldtdt' = 0, _t oat1 (I) oa;0 (t') / c 
(1.1) 

where R is the energy operator 
0 

R=HintT(exp{-i ~ Hint(f)dt})=H;ntSr:_oo, 
-co 

ak:1, ak:0 are the creation operators for quasi­
electrons, € ( k ) the energy of the single fermion 
excitations relative to the Fermi surface, and the 
index "c" indicates an average over the strongly 
connected diagrams (see reference 1). 

In a previous paper2 we formulated a rule for 
going over from matrix elements of the variational 
derivatives of the energy operator R to the ma­
trix elements of the variational derivatives of the 
Feynman matrix 

00 

S ~~ S~oo = T(exp [- i ~ H1nt(t)dt]). 
-co 

According to Eq. (2.9) of that paper, Eq. (1.1) 
can be replaced for small E (k) (i.e., the imme­
diate vicinity of the Fermi surface) by 

oc 

i ( < o2S ) e-i'((k); t ldt = 0 (1.2) _t oat1 (OJ oa,t0 (I) c · 

*The main results of this paper were communicated at the 
Fifth All-Union Conference on Low Temperature Physics 
(Tbilisi, October 1958). 
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Going over to derivatives with respect to the 
electron-hole operators ak,s (just as this was 
done in references 1 and 2 ), we rewrite (1.2) in 
the form 

2~ (k) UkVk = (Uk- Vk) ~ Uk•Vk·Q (k, k'), (1.3) 
k' 

where Uk, Vk are the parameters of the canonical 
transformation from a to a, and 

qk) = E(k) -f.. 
00 

, · \ -i"i(k) 1 1 , {< o"S ) 
--- 1 J e ' . oak + (0) oat ~ (I) c 

-(X) ' ' ' 

- / o2S ) I dt 
~oa: k _ (0) oa_ k _ (I)/ c! ' . ' 

Q (k, k') = Qc (k, k') + Qph(k, k'), 

Qc (k, k) = , 
, {q(k, k') for k>kp 

q(k', k) for k <kp (1.4) 

00 

q (k, k') = i ~ d"dBdt exp {- (E'(k) "- 8 - i"E (k') t } 
-CO 

(2ph (k, k') , _ Zg2 
(:'_);;; (q) _ A (k, k', q) A 

~, (q)-+- s (k') +s (k) 

' (-k, --k', -q). q ~ k-k', (1.5) 

The details of this calculation are contained in 
reference 2. We abide also by the notation used 
in references 1 and 2. 

The vertex function A is defined by Eq. (3.15) 
of reference 2. It will be essential for us in the 
following that in the region of the infrared Cou­
lomb singularity for q2 ~ 0 it has the form 
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00 

\.kk'· )- 1 {I v(q)F(q)"\ • } 
1 ( ' 'q - vzv - 2 LJ .l dt'Ps.q(t) . (1.6) 

s -co 

Here v ( q) is the kernel of the Coulomb interac­
tion, 

F()=_±_ '\1. 1 
q v L.J ;'(t + ) -L ;:(/).' 

l+q>kF q . 
l<kF 

and 'lrs,q (t) is the coefficient for the main part 
of the fourth variational derivative 

< a4S 

. oats (T) oat,+ (6) oa1~q. s (0) oak',+ (I) )c 
= iv sq) 0 (-c) 0 (t- 8) 'Ys, q (t). (1. 7) 

2. THE PROBLEM OF THE SUMMATION OF THE 
COULOMB SINGULARITIES 

The expressions (1.5), (1.6), and (1.7) which we 
have obtained for the kernels Qc and Qph of the 
integral compensation equation contain fourth vari­
ational derivatives of the Coulomb matrix Sc. the 
expressions for which can be analyzed completely 
in the approximation of a high -density electron 
gas when the effective parameter for the Coulomb 
interaction v (kF) N/V is small compared to the 
electron energy at the Fermi surface k~ /2m, 
i.e., when 

-- - = -rscx< I. 4rc1t•e•N I k} 8 
k}V 2m rc3 

(2.1) 

Here a = ( 4/97T) 113, and rs is a dimensionless 
interelectron distance expressed in units of the 
Bohr radius. 

In that case the Coulomb energy is small com­
pared to the kinetic energy everywhere except in 
the region of small momentum transfers: 

(2.2) 

the so-called "infrared region." We can there­
fore use the usual perturbation theory everywhere 
except in the infrared region. In the infrared re­
gion, where the effective expansion parameter 
rsk~ /q2 is not small, it is necessary to sum the 
infinite series of "main" Coulomb terms which 
are proportional to the powers ( rsk~ jq2 )n. 

We meet here with a situation which is well­
known in relativistic quantum electrodynamics 
where, notwithstanding the smallness of the dimen­
sionless coupling constant (the fine structure con­
stant e2 /47T = 1/137) in the so-called "ultraviolet" 
and "infrared" regions of the momentum variables, 
the actual expansion parameter is a product of 
e2 /47T and a large logarithm. In quantum electro­
dynamics there are several well-known methods 
that allow us to sum the infinite sequence of main 

terms. We have here in mind the method of the 
summation of the main diagrams by Landau, 
Abrikosov, and Khalatnikov3 and the method of 
the renormalization group.4 

There are also a few methods, proposed in 
quantum statistics, which give similar results. 
The procedure of summing the main Coulomb 
diagrams developed by Gell-Mann, Brueckner. 
and Sawada5 is, thus, essentially equivalent to the 
method stated in reference 3. The well-known 
method of approximate second quantization6 in 
the problem of the high-density electron gas'ieads 
also to similar results .1 • 7 Finally, one can use 
for the summation of the Coulomb singularities 
in the Green functions the technique of the re..:: 
normalization group. (Such a possibility was 
first indicated in reference 8.) 

An important advantage of the renormalization 
group method is its regularity. It will be shown 
that the first approximation of the renormaliza­
tion group method leads to the same equations as 
result from the summation of the main diagrams 
(similar to what happens in quantum field theory) 
and to the equations of the method of approximate 
second quantization. 

The results of higher approximations in the re­
normalization group method may be of inter~st 
for a study of the problem of extending the re­
gion of applicability of the high-density electron 
gas approximation. 

3. THE RENORMALIZATION GROUP IN THE 
PROBLEM OF THE COULOMB INTERACTION 
BETWEEN ELECTRONS 

The possiblity of using the method of the re­
normalization group in the problem of the Coulomb 
interaction between electrons is based upon (see 
references 8 and 9 for more detail ) the group 
character of a finite multiplicative transformation 
of the basic quantities: the one-electron Green 
function G, the two-electron (four-vertex) Green 
function r, and the dimensionless Coulomb inter­
action parameter r [see (2.1)] 

(3.1) 

The meaning of the transformation (3.1) con­
sists in the fact that the totality of the quantities 
( G', r', r') describes the same physical picture 
as the triplet (G, r, r ). 

The main instrument of the renormalization 
group method are the Lee differential equations. 
To get these we must first of all write down the 
functional group equations corresponding to (3.1). 
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As a first step we must choose a representation 
of the Green functions G and r. 

For this purpose we go over to the symmetric 
energy-momentum representation of the electron 
operators (see, for instance, reference 10) 

00 

a. (p) =as (Po, p) = -vk ~ e'P·Tap, s (1:) d't, 
-00 

00 

+ < > 1 r -ip,T + < > d as· p = ~ ) e ap, s 1: 1:. (3.2) 
-oo 

The chronological pairing has the following form 
in that representation 
~--I 

as (p) a!' (k) = io (p- k) osaGo (p), 

o (p- k)- opko (Po- ko), 

Go (p) = 1 I [Po -Is (p) I+ ia sign e(p)J. (3.3) 

In the case under consideration we get for the 
total Green function, because of the definition of 
the renormalized energy E', 

(Tas (p) a: (k) S)0 I S0 = io (p- k) OsaG (p) 

also 

G (p) = s (p) I [Po -I s(p) I+ ia sign 'h (3.4) 

The two-electron (four-vertex) Green function 
r is defined as 

'( o4S ) 
1 oa5, (PI) oa5, (p2) oa:, (k1) oa:, (k2) c 

= 0 (PI+ P2- ki- k2) fs,s,o1o2 (pi, P2• kh k2). 

Here 

fs,s,a,a,(PI• P2• ki, k2) 
00 

= ~1t ~ d1:dtidt 2 exp {- ip~1: + ik~ti + ikgt2 } 

-oo 

The function r has a simple matrix structure 

fs,s,o,o, (PI• P2, ki, k2) = Os,a,Os,a,f(ki, k2,. PI• P2) 

- os,a,os,a,f (ki, k2, P2• pr). 

(3.5) 

In our case of the infrared Coulomb asymptotic 
behavior, the one-electron Green function G has 
no singularity, and we can thus put s (p) = 1. If 
we also take into account that for the compensa­
tion equation only the vicinity of the Fermi sur­
face is of importance, we can restrict our (Jonsid­
eration to the function r with k~ = k~ = p~ = pg = 0, 
i.e., 

(3.6) 

with Pt + P2 = k1 + ~· Indeed, we get from Eq. 
(1.5) 

q(k, k')=-21tf(-k, k, k-q, q-k). (3.7) 

On the other hand, it follows from (1.6) and (1. 7) 
that 

A (k, k'; q) = {l- 21tv F (q) r (q)}; V2v. (3.8) 

where r (q) is the "main" part of the function 
r ( l+q, k -q, k, l) , in the limit of small q inde­
pendent of k and l. 

In the lowest order of perturbation theory 

f 0 (k, l, l+q, k-q)=v(q)/21tV. 

It is the.refore convenient to introduce a new func­
tion g defined by the relation 

r (k, t, z + q, k- q) 

=vz~~g(k, l, l+q, k-q). (3.9) 

This function possesses the following important 
properties: 

a) It transforms under the transformation (3.1) 
as 

, -I 
g-+g = zi g; (3.10) 

b) It tends to a constant in the limit of switch­
ing off the Coulomb interaction. 

c) If it is written as a perturbation-theory series, 
it contains terms proportional to powers of the ratio 
(rsk~/q2 ). 

In such a case it is not difficult to write down 
the functional group equation for the vertex func­
tion g in the infrared region. To do this we shall 
introduce a normalizing momentum A. and go over 
to dimensionless variables 

g(q2, k}, .. . , r) = f(q2j),2, k}l)..2, r). 

The dots indicate here the unimportant momentum 
variables k2, Z2, (k-Z)2, .... We must also in­
clude in their number the energy variables ko. q0, 

Z0• We can omit writing all these variables explic­
itly, considering them as fixed parameters. Taking 
(3.1) and (3.10) into account we get 

f (q2 J)..~, k} I )..i, r1) 

(3.11) 

Choosing the normalizing momentum A. in such a 
way that 

f(l, y, r)=l, (3.12) 
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we go over to the functional group equation 

f(x, y, r)=f(t, y, r)f(x;t, y;t, rf(t, y, r)). (3.13) 

Differentiating (3.12) with respect to x and 
afterwards putting t = x we get Lee's equation 

at (x, Y. r) = f (x, y, r) <D (L rf (x y r)\ (3.14) 
ax X X ' ' ' )' 

where the function 

<D{ )=at(x,y,r)l 
y, f ax X=!' (3.15) 

according to the usual correspondence require­
ments must be evaluated by perturbation theory. 

4. THE INFRARED ASYMPTOTIC BEHAVIOR 
OF THE VERTEX FUNCTION 

The perturbation-theory evaluation of the func­
tion f which enters into the right-hand side of 
(3.15) must be performed with account of the mul­
tiplicative arbitrariness of {3.11), which insures 
the satisfying of the normalization condition (3.12). 

In this way we get, up to terms of the third 
order, 

fpert.th.(X, y, r)= 1-ar(f-1)+br2 (f-1Y 
- cr2 ( f - 1) + · · · , . (4.1) 

where a, b, and c are certain numbers (which 
may depend on the above-mentioned parameters). 
Substituting (4.1) into (3.15) and (3.14) and evalu­
ating the quadrature, we get successively 

<D (y, r) = ary + cr2y, 

df -ar ~ 
-cf2'""'(-,-1 +-,-!-r~f c...,..; a) - y x' ' 

r fIn j (:: ::: f J + 1 - T = ary ( 1 - +). (4.2) 

We obtain here for f a transcendental equation 
which can be solved by successive approximations, 
taking into account the fact that r is small. This 
gives 

f(x, y, r)={1+ary(+-1) 

, r.E...]nli __c_ary(1 ,x-1) +ref a j}-1. 
I a 1 + rc! a 

(4.3) 

We note that the constant b in (4.1) does not 
enter into Eqs. (4.2) and (4.3). The point is that 
this constant is not independent. Expanding (4.3) 
in a power series in r and comparing it with 
(4.1), we find that 

(4.4) 

We must now still perform the transition to the 
usual unnormalized function f0, which depends on 

the observed value of the coupling constant r = rs 
and which does not contain the normalization mo­
mentum A.. 

Perturbation theory gives for f0 

' k2 ' k2 
f~ert. th. (q2, r~) = 1-ar, ( q; +d)+ azr~ ( q~ - d) 

2 k} ' 
-cr, (j2 --t-· · ·. 

Here d is a constant, just as a and c. 

(4.5) 

To perform the above-mentioned transition we 
use a standard method (see Sec. 42.3 of reference 
4) based upon the property of the invariant charge 
rf: 

rf(q2 /A2 , k}/i-2 , r)=rsfo(q2 , k}, r.). (4.6) 

Putting q2 = A. 2 in (4.6) we get for r the ex­
plicit expression 

pert.th. 2 2 
r = r,f0 (f., kF, r,). 

Substituting this value into the left-hand side 
of (4.6) and taking (4.3) into account we obtain, 
after some simple calculations, 

f0 (q2 , r,)=[l+ar,C~ +d) 

k2 ) J-1 + r, _:_ ln ( 1 + ar,-{-- . 
a , q 

(4. 7) 

One can easily verify that (4.5)' is just the ex-
pansion of (4. 7) in powers of small rs. 

5. DISCUSSION OF THE RESULTS 

Let us discuss Eq. (4. 7) which we have obtained 
and which describes the behavior of the Coulomb 
four-vertex function in the infrared region. 

Recalling that according to (3.9) 

r ( ) v (q) t ( 2 ) - 2e2 t ( 2 ) q = 2"'V o q ' r, -vI q lz o q , r, , (5.1) 

we consider the expression 

Q-2 _ 1 t ( 2 ) _ [ 2 + k2 I 2 d - (j2 0 q , r, - q ar, F 1 q ar, 

+ r,fq2 ln(1 + ar, ~~ )r1
• (5.2) 

In the limits of small rs and q2 we get 

Q-2 = 1 = _1_, 
q2 + ar,k} q2 + q; (5.3) 

where qs = 0.814 r~2kF is the inverse Thomas­
Fermi screening length. 

In the lowest approximation (in powers of rs ) , 
Eq. (5.2) leads to the well-known formula of the 
Coulomb screening. We have thus shown that the 
results of the summation of the main Coulomb 
diagrams by Gell-Mann, Brueckner, and Sawada5 

can be obtained by the renormalization group 
method by far simpler means. 
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We note also that substituting (5.3)into (5.1) and 
into (3.8) and taking into account that 

Jimq2F(q)v(q) = q~. 
q2--+0 

we get* 

(5.4) 

Equations (5.3) and (5.4) are the same as the 
results of Sec. 6.2 of reference 1 obtained there 
by qualitative arguments. 

The significance, however, of Eqs. (5.2) and 
(4. 7) and also of the possibilities of the renormal­
ization group method in the problem of interacting 
electrons is not exhausted by this. The renormal­
ization group technique gives us a regular method 
to improve the asymptotic properties of the expan­
sions of the usual perturbation theory. This fact 
is well-known in quantum field theory. The pres­
ent investigation illustrates this fact for quantum 
statistics. 

Equations (4. 7) and (5.2) appropriately general­
ized to the case where the energy arguments are 
not equal to zero are thus the second approxima­
tion to the results of reference 5. A further gen­
eralization of these equations to higher orders can 
very simply be performed by means of taking 
higher terms in powers of rs into account in 
(4.1). 

Such a generalization can be of interest, for 
instance, to make the criterion for superconduc­
tivity (see Sec. 5.4 of reference 1) more precise 
and also to make the expansions for the correla­
tion energy more precise in the region of not-very­
small rs. 

We note in this connection that at the last mo­
ment we learned of the thesis by Dubois 12 in which 
there is an attempt to make the formulas of ref­
erence 5 more exact by summing the main dia­
grams of the second order. Without going into a 
detailed comparison, we note that the structure of 
the expressions obtained by Dubois 12 [ Eqs. (2.7), 
(2.5), and (A.3) of that paper] correspond at first 

*This formula is in agreement with the result of refer­
ence 11. 

sight to the following substitution into (4. 7); 

c ' k} \ 2 k} 
rs-ln(l-jars-.;--;.-rsc-.' a , q 1 q 

which is valid only for small rs and not too 
small q2• 
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