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A weak solution of He4 in liquid He3 is considered as a Boltzmann gas of impurity excita
tions (associated with the He4 atoms ) in a Fermi liquid. The spectrum of the impurity 
excitations and the thermodynamics of the solution are examined. Kinetic equations for 
Fermi and impurity excitations of the solution are derived. The dependences of the diffu
sion, thermal diffusion, viscosity and thermal conductivity coefficients on temperature and 
concentration are determined. 

PuRE liquid He3 near absolute zero is a Fermi 
quantum liquid, for which Pomeranchuk1 was the 
first to develop a qualitative theory that yielded 
the temperature dependence of both thermodynamic 
quantities (specific heat and entropy) and kinetic 
coefficients (viscosity and thermal conductivity). 
A theory constructed recently by Landau2 provides 
a quantitative description of liquid He3 as a system 
of Fermi "quasi-particles," the number of which 
equals that of the atoms in a unit of volume. Phys
ically a quasi-particle is a He3 atom in the self
consistent field of the surrounding atoms in the 
liquid He3• At temperatures much below the de
generacy temperature most of the quasi-particles 
are condensed into a Fermi sphere [or into a 
Fermi layer or "bubble" in the case of the roton 
spectrum (3)] and only a negligible fraction is in 
the diffuse Fermi zone. In this temperature re
gion the theory permits determination of the ther
modynamic and kinetic properties of liquid He3•1•3•4 

An essential difference between the Landau the
ory of a Fermi liquid and the Fermi-gas theory is 
that the energy of a quasi -particle is a functional 
of the distribution function. At temperatures close 
to T = 0 this relation is given by2•4 

E = E (p) -[- ~ f (p, p') Y d1:' d-e= 2d p (2:-th)'\ (1) 

where v is the difference between the true distri
bution function and its value at T = 0 (f is Lan
dau's function in reference 5 ) . At sufficiently low 
temperatures the momentum dependence of the ex
citation energy may be of two types: 

s(p)=a :-I P-Po I Po/m, (2) 

where Po is the momentum limit, and a and m 
are constants (this is equivalent to the gas spec
trum E = p2/2m ), or 
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E (p) =a+ (p- p0) 2 /2m. (3) 

The type of spectrum cannot be determined from 
presently available experimental data; we note 
only that spectrum (2) seems more natural. 

When liquid He3 contains a small number of 
foreign atoms, such as a small admixture of He4 , 

in the Boltzmann case these atoms will cause ex-
citations with the spectrum 

E = ~ + q2 I 2M (4) 

or 

(5) 

where q is the momentum of the impurity excita
tion; A is the zero-point energy; q0 and M are 
experimentally determined parameters. (4) and 
(5) may be supported by the same line of reason
ing that was used by Landau and Pomeranchuk6 

for the spectrum of impurities in liquid He II. 
We shall consider the thermodynamic and 

kinetic phenomena in weak solutions* of He4 in 
liquid He3• In addition to the coefficients of vis
cosity TJ and thermal conductivity K the new 
kinetic factors which appear are the diffusion co
efficient D and thermal diffusion coefficient DkT, 
where kT is the thermal diffusion ratio. These 
coefficients will, as usual, 7 be determined by 
means of the equations 

' k ' 
i = - pD ( vc + ; vT) for g = g i !- g r 0, (6) 

for i ~ 0, (7) 

where i is the impurity current, Q is the heat 
flux, g is the total momentum flux in the solution, 

*We are considering an unstratified region in which the 
solution is not a superfluid. 
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consisting of tne momentum transported by impur
ity excitations (gi) and the momentum transported 
by Fermi excitations (gf). 

It was shown in reference 8 that the collision 
integrals due to the scattering of Fermi excitations 
contain, instead of the usual deviation 6nf of the 
Fermi-excitation distribution from equilibrium, 
the effective expression 

This same expression replaces the usual 6nf in 
equations for the different fluxes resulting from 
Fermi excitations. For example, the momentum 
flux of Fermi excitations, which determines the 
Fermi portion of the solution's viscosity, is given 
by 

Similarly, the energy flux, which determines the 
Fermi part of the thermal conductivity, is given 
by 

(9) 

(10) 

Therefore the fact that 6nf is given by (8) appears 
nowhere in the calculations. 

1. THERMODYNAMICS OF WEAK SOLUTIONS 
OF He4 IN LIQUID He3 

We now determine the conditions under which 
dissolved He4 atoms can be described by Boltz
mann statistics. Departures from classical sta
tistics arise at temperatures where either the 
quantum degeneracy of the impurity gas or the 
interaction between impurity excitations is im
portant. The spin of the atoms is zero, so that 
the degeneracy temperature T 0 of the impurity 
gas for spectrum (4) is9•10 

T 0 = (h 2n~'c'1• I kM) (3'1'rt I 2), (11) 

where n0 = p/m3 is the number of atoms of pure 
He3 in 1 cm3, m 3 is the He3 atomic mass and c 
is the He4 concentration. We shall compare (11) 
with temperatures at which interactions between 
impurities play a part. The interaction energy of 
impurity particles is ~ Uc, where U is the char
acteristic energy of interactions between helium 
atoms and is of the order of a few degrees. De
generacy occurs before the interaction becomes 
prominent10 when the inequality (kT0 /ucqt/2 ~ 
c-113 » 1 is satisfied. When c < 10-2 we have 
T0 < 0.2°K. Pomeranchuk10 has shown for bosons 

and spectrum (5) that the degeneracy temperature 
is given by 

(11a) 

In this case the departure from classical statistics 
results from the interaction of impurities and ap
pears at temperatures ~ Uc /k. Classical statis
tics will thus be applicable for T .<:, 0 .1 o K with 
c ~ 10-2• 

The chemical potential of Fermi excitations in 
a weak solution of He4 in liquid He3 has the stand
ard form 11 

(12) 

where Jlo is the chemical potential of pure liquid 
He3• Khalatnikov and Abrikosov3 have considered 
the thermodynamics of pure liquid He3• The pres
ence of impurities results in additional contribu
tions to the free energy F, entropy S and specific 
heat C, which are calculated by means of (12). 

For a spectrum of type (4) we have 

Fi = -N4kT!n[~: (~~te-NkTJ, 

Si=N4k{ln[:. (~~?']+ n. Ci=}N,k, 

where N4 is the number of impurities in a volume 
V. When V = 1 N4 is related to the concentra
tions c = N4m 4 I ( N3m 3 + N4m4 ) and c as follows: 

c = N .m. I p = N .m. I N am3 = em. I rna. N 4 IN 3 <S I. 

Here m 3 and m 4 are the masses of He3 and He4 

atoms; N3 is the number of He3 atoms per unit 
volume. For the spectrum (5) we have 

F· =- N kT I I"~ q~ ... /MkT -t>lkT] 
1 4 n_N4 1i3 V~e , 

Si and Ci are proportional to the concentration 
and are therefore small at temperatures ~ 1 o. On 
the other hand, at temperatures ~ 0.1 o they may 
have an important influence on the entropy and 
specific heat of the solution. 

2. THE KINETIC EQUATION 

The kinetic equation which determines the dis
tribution function n of elementary excitations in 
a solution of He4 in liquid He3 is 

~ T ~ i!!!_ _ _(Je_~- J(n) at op or or op - . (13) 

We regard the solution as having macroscopic gra
dients of thermodynamic quantities and small gra
dients of the velocity u. In this case the distribu-
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tion functions nf and ni will differ slightly from 
the1r equilibrium values, as follows: 

where 

11£o = [exp{(E-pU-fL)/kT} + 1p, 

nio =A (c, T) exp {- (E- qu) I kT}, 

A (c, T) = (cp I m4 ) (2rcMkT)-'1• 

for the impurity spectrum (4). 

(14) 

(15) 

(16) 

We shall now express the left member of the 
kinetic equation in terms of gradients of T, c, 
and u. For this purpose we shall, as is custom
ary,12•4 substitute n from (14) and (15) into (13) 
and shall make use of thermodynamic identities 
and hydrodynamic equations. We shall also as
sume that at the considered point of the liquid 
u = 0. The kinetic equation for Fermi excitations 
therefore becomes 

1 anf,o ( ae 1 ae ) (au, auk 2 0 OUz ) 
-2 a~ P, apk -3 Pz ap; 0ik cxk + ax1 -3 ik ax; 

an{ 0 ae 'e- "' ) J - --ae ap (--r -s vT = J££ + n (17) 

and similarly, the kinetic equation for impurities 

, a£ vc 1 a£ ( E 3) vT 
I 11ioaq_c_l nioaq w--z T 

a£ vP J J + nio aq -P- = :if + iL· (18) 

In (17) and (18) we have omitted the term resulting 
in second viscosity, which will not be considered 
below. Furthermore, without affecting accuracy 
we may omit the term in (18) that contains "Vp, 
which is relatively small.* Jff and Jfi are the 
collision integrals for the scattering of Fermi ex
citations on other Fermi excitations and on impuri
ties. Jif and Jii have analogous meanings. By 
means of the substitutionst 

o/if =- n.fo (1- n£oH. oni =- ndp (19) 

we reduce the collision integrals to the standard 
forms 

*The independent variables are actually c and T. There
fore "Vp ~ (ap/acWc + (ap/aT) VT. 

tWe shall hereinafter omit the bar above OOf. 

J ff ~= ~ Wff nf01n£o:r(1 - n{ 01) (1- n£ 02) (<h + ~2- ~~- ~;) 

X o (p1 + P2- p~- p;) 0 (Et + E2- E~- E~) d-c2d-r;dp~, 

xo(p + q-p'- q')o(E + E-E'- E')d-r'dqdq', 

x o(p + q -p'- q')o(E + E -E'- E')d-rdp'dq', 

(20) 

We also require the cross sections for the scat
tering of impurities on Fermi excitations and on 
other impurities. The interaction law of these ex
citations is, of course, unknown, but just as in the 
theory12 of weak solutions of He3 in He II, it is 
reasonable for specific estimates to use a o -func
tion interaction law: 

Vn = V01 o (x- y), Vii = Vo2o (Yl- Y2), 

where x is the coordinate of a Fermi excitation 
and y is the impurity coordinate. The unknown 
constants v01 and v02 are determined by com
paring theory with experiment. The cross sec
tions are calculated as in the theory of slow-neu
tron scattering by atoms,12 •13 and we obtain 

( mM ) 2 I vot 12 

Ofi = m + M 7t'li4 , (21) 

(22) 

We also obtain the cross section for the scattering 
of an impurity on a Fermi particle with the spec
trum (3). This is analogous to the scattering of 
an impurity on a roton and the total cross section 
is correspondingly12 

3. DIFFUSION 

Jvotl 2 M Mm 
crn=~m+M" (21a) 

We consider first the diffusion of impurities. 
The kinetic equations (17) and (18) for Fermi ex
citations and impurities were derived above; with 
a non-zero concentration gradient in the system 
they are 

. anfo ae ms 
kT - 0- -0 - vc = J·i£ + Jfi , e pm4 

0£ yC J 1 J llio-0 -·= if 1 ii· q c 

(22) 

(23) 
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An exact general solution of the problem is 
hardly possible. We shall therefore consider the 
two limiting cases; results in the intermediate re
gion can then be obtained by interpolation. The 
first limiting case is represented by the high-tem
perature region, where the effective number of ex
citations in the diffuse Fermi zone is much greater 
than the number of impurities. In the low-tempera
ture region, on the other hand, the situation is re
versed and the effective number of excitations in 
the diffuse Fermi zone is much smaller than the 
number of impurities. 

It follows from symmetry that the deviations 
(19) of the distribution functions from equilibrium 
may be sought in the forms 

'f' = a(E) (qvc), ljl = b(z) (pvc). (24) 

It is important here that the functions a and b 
are independent of angles. Spectrum (2) for Fermi 
excitations and spectrum (4) for impurity particles 
will be considered in greatest detail. 

The High-Temperature Region. There is a rela
tively small number of impurity particles; collisions 
among these are unlikely and insignificant. The con
centration region where this occurs is given more 
precisely by the condition tff « tfi, i.e., the effec
tive time for a collision between two Fermi par
ticles is much shorter than the effective time for 
a collision between a Fermi particle and an impur
ity. The kinetic equation for impurities is there
fore greatly simplified. Simple calculations show 
that the Fermi distribution function deviates con
siderably less from equilibrium than the impurity 
distribution function. The condition tff « tfi is 
sufficient so that in the mixed collision integrals 
Jif and Jfi in (20) we can neglect lf! compared 
with <p. Furthermore, the momenta of excited 
Fermi particles are much greater than those of 
impurities; we may therefore neglect the variation 
in the absolute value of the relative momentum of 
colliding particles. From all of these considera
tion we obtain 

where <Tff is the transport cross section for the 
scattering of an impurity on a Fermi excitation; 

air =- ~ ~a if (1- cos~) d cos~-

Here lf! is the angle between the vectors q and 
q'. According to (21) aif does not depend on the 
energy of the colliding particles; we therefore ob
tain 

nio{ • [de d-rf] ~--l ) oni=-- a.c(MkT) "T S (qvc. c 1 up e <=!L 

With the aid of oni it is easy to calculate the im
purity current 

i = \ qonidq =- • P vc. (25) 
~ m4a if (d" f I dp) <=!L 

A comparison of (25) with (6) yields the diffusion 
coefficient in this limiting case: 

D = _1_ 1 = n:2 (!.)2 _1i_ = 2kT til • 
m4a ~f (dT rJ dp)•=rt Po a~ m4 3m, (26) 

where 

(27) 

is the effective time for the scattering of impuri
ties on Fermi particles; Vf = p0 /m; Nf =% N3kT/~ 
is the number of Fermi particles in the diffuse 
zone. As already noted, the high-temperature 
region is given by the condition tff « tfi, i.e., 

(28) 

According to (26) and (27), when (28) is satisfied the 
diffusion coefficient for a weak solution of He4 in 
liquid He3 is constant, being independent of both 
concentration and temperature. 

The Low-Temperature Region. We now con
sider the opposite limit, when the number of im
purity excitations is much greater than the effec
tive nuniber of excitations in the diffuse Fermi 
zone. This condition is represented more exactly 
by tii « tu. where til= afiN4vi, til= a£iNfVf 
are the effective times for the scattering of im
purities and Fermi excitations on impurities. The 
low-temperature region is therefore represented 
by the inequality 

c>(T!To)Vc/Vi, Vr =Po/m, vi~2(2kTj77M)'1' (28a) 

In this case the impurity distribution function de
parts from equilibrium much less than the Fermi 
function. Therefore <p may be neglected by com
parison with lf! in the collision integrals Jif and 
Jfi in (20). To determine lf! we use the kinetic 
equation for Fermi excitations: 

~ dema . 
de kT dp ~ '\l C = J fi -t- J ff · (29) 

The two ways of determining lf! yield identical 
results: 1) by omitting Jff in (29) as a small 
quantity because tfi « tff; 2) by multiplying (29) 
by the Fermi-particle momentum p and inte
grating with respect to dTp. Since J pJffdTp = 0 
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we thus eliminate Jff. We shall use the first 
method. In virtue of what has been stated above 
in connection with the solution in the high -tern
perature region, we now obtain 

Hence 

(30) 

Using the momentum conservation law gi + gf = 0, 
we obtain for the impurity current 

(31) 

(30) and (31) are used to give the diffusion coeffi
cient 

D = (km/ Po~·fiP) TIc= (kT I m4) tfi, (32) 

where 

(33) 

It is easily seen from (26)- (28) and (32) - (33) 
that an interpolation formula for the diffusion co
efficient which includes both limiting cases is 
given by 

D=tkT;m,, where llt=(312fu + 1/tfi). 

We may treat analogously the case in which 
Fermi excitations are described by spectrum (3) 
and impurities by spectrum (4). The cross section 
(21a) must now be used; omitting the steps of the 
calculation we give the results: a) for high tern
peratures 

(34) 

b) for low temperatures 

(35) 

In (34) and (35) J.llim denotes the Fermi energy 
limit for spectrum (3): 

(.!lim= [p (2 rr1i)2 1 m3 16 rrp~ V2m] 2 • 

In liquid He3, J.llim = 1.05° K when this spectrum 
is realized.3 

4. THERMAL DIFFUSION 

With non-zero concentration and temperature 
gradients in the solution at constant pressure, the 
impurity current i is defined by (6). The system 
of kinetic equations for thermal diffusion is 

aE(E 3)' vT 
n io aq kT - 2 T = J if + Jii ' 

anOf ae (E- p. ) -Tav ------y--s vT=Jff tJfi. 

The thermal diffusion ratio kT is calculated 
just like the diffusion coefficient; for spectrum (2) 
we obtain kT =c. Thus the thermal diffusion co
efficient is smaller than the diffusion coefficient 
by a factor equal to the concentration. 

5. VISCOSITY 

At sufficiently low temperatures, for which 
alone the present theory is valid, the viscosity 
coefficient TJ of the solution will consist of the 
coefficient T}f of Fermi viscosity, resulting from 
momentum transfer by Fermi particles, and the 
coefficient TJi of impurity viscosity, resulting 
from momentum transfer by impurity particles: 

(36) 

a) Fermi Viscosity of the Solution 

The kinetic equation for Fermi excitations when 
the system contains non-zero gradients of the mac
roscopic velocity u is 

1 anof ( ae 1 ae ) --zaz- Ptapk - 3 Ptap1 o;k 

( au. auk 2 au/ \ 
x -'-+---- 0tki=Jff --T- Jn. 

axk ax, 3 ax/ / 

We choose our z axis in the direction of the ve
locity and let the velocity gradient be perpendicular 
to the z axis along the x axis. In spherical co
ordinates with a polar z axis the kinetic equation 
then becomes 

anof as au . ae p ap ax cos fl sm fl cos cp = J ff + J fi • 

In accordance with the symmetry of the problem 
the solution of the kinetic equation will be sought 
in the form 

asau . 
~ = p apaxcosflstnflcoscpb(s). 

Since a general solution is hardly possible, we 
shall determine the dependence of nf on temper
ature and concentration in the two limiting cases. 
1) At high temperatures the number of Fermi par
ticles in the diffuse zone is given by Nf » N4 

(more exactly: tff « tfi, tif « tii ). In this case 
only the scattering of Fermi particles by each 
other is important and Jfi may be omitted from 
the kinetic equation. 2) At low temperatures the 
number of Fermi p~rticles in the diffuse zone is 
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given by Nf « N4• Here only collisions between 
Fermi particles and impurities are important and 
collisions between Fermi particles may be neglec
ted. The intermediate region can be obtained by 
interpolating between the two limiting cases. 

The High-Temperature Region. The collision 
integral Jff in (20) is 

Jff = ~ Wff 1lfotllfo2 (1- f1~ 0) (1- fl~ 02) ((h + (h- Y:- Y~) 

X o (Pt + P2- p:- p~)O (st + E2- E~- ;;~) d1"2dc:~dp~. (37) 

If we assume that the collision probability Wff de
pends only on the angles between momenta, by 
transforming to dimensionless variables in the 
collision integral we find that it can be repre
sented by 

Jrr = :r£r llfot (1-nrot) 

. au a€ \ 
X cos 6 sm6 cos cp ax p ap j bvrnor (1 -nor) d-e, 

where 

cr;f = (kT / p..) cr;f,o' 

in which <Tffo is the viscosity transport cross 
section.4* We shall, as usual, calculate the z 
component of the momentum transported in the 
x direction: 

f \ ~ • au 
Dxz = - j p ap COS a SID a COS cpond-: = 'flf ax· 

The result obtained is (see reference 14) 

2 -. (tJ.)2 
-2 1 P~-

'flfh = 15(Polcrrro) k T =5Na miff. 

(38) 

(39) 

(40) 

(41) 

We have thus obtained the Pomeranchuk tempera
ture law 11 ,...., T-2, as is not surprising since our 
initial premises agree with those of Pomeranchuk. 

The Low-Temperature Region. Here only the 
scattering of Fermi particles by impurities is im
portant; we therefore omit Jff in the kinetic equa
tion for Fermi excitations. In calculating Jfi we 
also consider that in this case oni « onf, and that 
therefore in Jfi ni may be replaced by the equi
librium Maxwellian distribution function nio· As 
a result we have 

In this case the effective deviation of the Fermi 

*Unlike the ordinary transport cross section (which we de
note by a*), the vicosity transport cross section a* is obtained 
by averaging the corresponding cross sections multiplied by 
(1- cos t/JY sin2 cp. This is shown in greater detail in refer
ence 14. 

distribution function from equilibrium will be 

where 

(43) 

Here <Tfi is the viscosity transport cross section. 
The ordinary transport cross section which is ob
tained when diffusion and thermal conductivity are 
considered is denoted by the same symbol without 
a bar. We use (42) and (40) to determine the Fermi 
part of the viscosity coefficient at low temperatures: 

'YJ n = Po I 5 ;ri c = N a Pin I 5 m. (44) 

We note that at low temperatures 1'/f is inversely 
proportional to the concentration. 

An interpolation formula for 1'/f which gives 
correct values in both limiting cases is 

b) Impurity Viscosity of the Solution 

The impurity viscosity of the solution is calcu
lated in exactly the same manner as the Fermi 
part of the viscosity coefficient. The interpola
tion formula for 1'/i which gives correct values 
at the high-temperature and low-temperature 
limits is therefore 

'Yli = (cp I m4) kTti, ti1 = {fif1 + tli1), 

where 

Nr = (3T /2To)N3 • (46) 

In all of the foregoing calculations <Tffo• <Tff and 
<Tii [(21 and (22)] were constants, being independ
ent of momentum. In the theory that has been.de
veloped here these quantities are unknown and are 
determined and normalized by comparing the the
ory with experiment. For a preliminary estimate 
of the contributions made by different processes 
to the viscosity of the solution we set 

-· 2 !J ff 0 ~ al. 1 o-Is em 

-· 2 :J ii - a3 • 1 0-lo em , 

where a1, a 2 , and a 3 are constants of the order 
of unity. 

Furthermore,3 

p..fk = pg/2mk = 3.3°I\, m = 1.43 m3 , 

Po It.= 0.76- 10-s em -i, p = 0.078 g/cm3. 
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Inserting these numerical values into (36), (45), 
and (46), we obtain the following expression for 
the viscosity of the solution: 

'YI = 1.24-10-4 I a1T2 {I+ 7.2 (a2/ a1)cr-2} 

T-'1• +2.1·10-5 (a2 {l+l.l(aa/a2)c }. 

6. THERMAL CONDUCTIVITY 

The thermal conductivity coefficient K of the 
solution, like the viscosity coefficient, includes 
Fermi and impurity parts: 

x=xt+lq, (47) 

The system of kinetic equations required to deter
mine the thermal conductivity is the same as that 
used in discussing thermal diffusion and is given 
in Sec. 4. In accordance with the symmetry of the 
problem we seek a solution in the form 

Further calculations are entirely analogous to 
those performed for the viscosity. We first cal
culate the Fermi part of the thermal conductivity 
coefficient in the high -temperature and low-tern
perature limits ( Kfh and KfZ, respectively). An 
interpolation formula for Kf is then constructed. 
The impurity part Ki of the thermal conductivity 
coefficient is calculated similarly. The results 
are 

Xf11= 5I6C0 (p0 /m) 2 tu, xn =%Co(Po/m)2 tn, 

xih = 5 (pk2 I m4M) cTtu, xil = 5 (pk2 I m4M) cTt ii. 

Interpolation formulas for Kf and Ki are 

xr =%Co(Po/m)2 tr, t(1=t'f?+t£/, 

xi= 5 (pk2 I m4M) cTti, ti1 = ti? + fti1, 

where c0 is the specific heat of a unit volume of 
pure liquid He3 and the other quantities have .the 
same meanings as in (45) and (46) for the viscos
ity. The absence of bars Indicates that we are 
here using the ordinary transport cross sections. 4 

We note that at the high-temperature limit Pomer-

anchuk's law1 for the thermal conductivity, Kf"' 
T-1, is obtained. 

In conclusio~ the authors wish to express their 
deep gratitude to B. I. Davydov for a valuable dis
cussion. 
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