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Inelastic scattering of nucleons on Mg24 and Si28 nuclei is investigated with account of 
Coulomb interaction for 1) excitation of collective nuclear levels, and 2) single-particle 
excitation in the field of a deformed nucleus. An analysis is made of the relation between 
the character of the angular distribution and magnitude of the effective cross section on 
the one hand, and the magnitude and the sign of the deformation on the other. 

l. Many recently published papers deal with ex
perimental investigations of inelastic scattering 
of nucleons and deuterons by nuclei. 1•2 This prob
lem becomes even more interesting because a com
parison of the experimental data with the results 
of the theoretical investigations can lead to many 
conclusions concerning the character of excitation 
of nuclei. 

The present paper is devoted to a theoretical 
investigation of inelastic scattering of nucleons 
by Mg24 and Si28 • Two cases of excitation, one
particle and collective, are considered. 

Unlike Sawicki, 3 who recently considered this 
problem, we also take Coulomb interaction into 
account and investigate the dependence of the 
character of angular distribution and of the mag
nitude of the effective scattering cross section on 
the magnitude and sign of the deformation. 

2. We first consider single-particle excitation. 
Here, as is known, it is assumed that only one of 
the nucleons above the closed shell is excited, and 
that this nucleon moves in the field of the deformed 
nucleus. 

The wave functions for the nuclear system at 
the beginning and the end of the process are re
spectively4 

(1) 

(2) 

where I, K, and M is the angular momentum of 
the nucleus and its projections along the symmetry 
axis of the nucleus and a stationary axis respec
tively; !J = ~ !Ji, where !Ji is the projection of 
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the momentum of the i-th nucleon (from among 
the nucleons above the closed shell) on the axis 
of the nucleus; xn is the anti-symmetrized wave 
function of the nucleons above the closed shell; 
the wave functions cp ( (3, y) and D ( 8i) describe 
the collective (vibrational and rotational) states 
of the nucleus, (3 and y being parameters that 
characterize the deformation of the nucleus, while 
8i (81 82 83) are the Euler angles; p =I+ K - !J -
(1/2) A, where A is the mass number of the nu
cleus. (The primed symbols in <I> have the same 
meaning as in <I>0, but pertain to the final states 
of the nuclear system. ) 

Since it is assumed that the incident nucleon 
interacts only with one nucleon of the nucleus, we 
can write 

(3) 

where 

X Y t· m (%,, tpt) S \:;,) D 1i (4) 
t l miQi-ai 

is the wave function of the excited nucleon, re
ferred to a stationary system of coordinates, 
xn0 is the wave function of the remaining nu
cleons outside the closed shell, with RNZ· ( q) 

l 
being the radial wave function, S ( ai) the spin func-
tion, and Az.g. _a· the coefficients of diagonaliza-

1 1 1 

tion, tabulated by Nilsson.4 We choose the energy 
of interaction between the incident nucleon and the 
i-th nucleon of the nucleus in the form 
V =- V0o(r- r,) 

I' + 4tte2e ~ r, Y;.m. (&, rp) Yrm· (%t. rp,), (5) 
I'm' (21' + 1) r~'+1 

where E = 1 when the incident and i -th nucleon 
of the nucleus are protons, and E = 0 in all other 
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cases. The Coulomb interaction in expression (5) 
is chosen in the form used in reference 5, where 
it is assumed, first, that the electric interaction 
occurs only when r > r 0 (where r 0 is the elec
tric radius of the nucleus ) , and second, that the 
wave functions of the nuclear nucleons are real 
in the region q < r 0• 

Taking plane wave functions for the incident 
nucleon at the beginning and the end of the proc
ess, we obtain for the differential cross section 
of inelastic scattering 

where 

dcr }L 2V 0 -./--Q- 1 0 

dQ = (2d2 J2 V I+£ 21 + 1 ~I Hu )", 
0 

H,f = + V(2! + I) (21' + !) 

x ~ ~ 2] [C (Llttl; m,-,,Q/2;KK') 
Lllil~mtcrf 

-K -K')]oMM'o , 
' n1 + IC ni + K ' 

with 

x (LJ'miM 1 Lm, + M) (lJQ,- -,,K I LQi + K- -;t) 

X u;rn;.- jiK I LQ' +K'- '1£). 

(6) 

(7) 

(8) 

In Eq. (6) f.! is the reduced mass, E~ the en
ergy of the incident nucleon in the center of mass 
system, Q the energy absorbed by the nucleus In 
the reaction, and the function J ( q) which enters 
into (8) is equal to 

00 

J ,(q) = \' R.Nl.(ri)l<. ,(ri)ft(qr,)r"dri 
lltli J t Nlt t 

0 

00 

X \ exp (iqr) y (& ) d 
.l rl+l lo ,cp r, 
r, 

(9) 

where r 0 is the electric radius of the nucleus, 
q = I k- k' I, and fz ( qr) is the spherical Bessel 
function (k and k' are the wave vectors of the 
incident and scattered nucleon). 

3. Let us apply the derived formulas to the 
scattering of protons by Mg24 and Si28 with excita
tion of the first level. In both cases we have I = 0, 
K = 0, M = 0, I' = 2, K' = 0. Therefore, in ac-

cordance with the selection rules Qi + K' = gi 
+ K, we can write gi = gi. It is known that in Mg24 

the nucleons above the 0 16 shell ( N = 2 ) are in 
the state with gi = ± Y2 and ±% at o > 0 and 
gi = ±% and ±t/2 at o < 0 (6 is the deforma
tion parameter). Consequently, the possible tran
sitions in Mg24 are Y2 - Y2 and % - % (and 
also the transitions - Y2 - - Y2 and -% - -%). 
We use the well known relation between the exci
tation energy and the deformation parameter 

where liw0 = li2 /2Mr02, where r 0 is a parameter 
that enters into the expression for the oscillator 
potential, M the mass of the nucleon, and r~gi 
the eigenvalue of the additional term in the inter
action taking into account the deformation of the 
nucleus and the spin-orbit forces; the index a 
indicates the number of the level with given gi 
according to Nilsson.4 Nilsson also tabulated the 
values of r~g for different values of the defor
mation parameter o (at K = 0.05 ). By finding 
the density of the nucleons in the nucleus on the 
basis of the oscillator wave functions, and by 
stipulating that the point of maximum slope of 
the density curve correspond to the boundary of 
the nucleus, we can determine the value of the 
parameter r 0• Assuming for the nuclear radius 
Ro = 1.45At/3 X 10-13 em, we find approximately 
the same value for Mg24 and Si 28 , r~ = 1. 9 x 10-13 

em. Using the experimental value of the excita
tion energy AE, we can determine the deforma
tion parameter o from Eq. 10. In the case of 
Mg24 the excitation energy of the first level is 
1.37 Mev. Assuming the transition (%)at- e/2) a 2 
to take place, we obtain from Eq. (10) for the de
formation parameter two values of o , namely 
o = 0.17 and o = - 0.22. If, on the other hand, 
we assume a (%)at- (%) a 2 transition, then 
the deformation parameter is found to be prac
tically zero. Thus, only a %-% transition 
is possible in the Mg24 deformed nucleus in the 
case of single-partiCle excitation. 

A different result is obtained in the case of the 
Si28 nucleus, in which the levels ± %. ± Y2, ±% 
are filled at o < 0.17 and the levels ± t/2, ±%, 
±% are filled at o > 0.17. On the basis of the 
selection rule gi·= gi we have the same transi
tions as in the case of Mg24 , namely 1/ 2 - Y2 

and %- %. (In the outer shell of Si28 there is 
only one level with gi = ± %. ) 

Considering that the excitation energy of the 
nearest level in Si28 is 1. 77 Mev, we obtain for 
the deformation parameter o = 0.1 and o = 0.3 
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for the transition %-% and 6 = 0.1 for the 
transition % -% 

4. From (7) and (8) we have for the 1/ 2 - % 
transition 

Hit = -t {J22o (q) [Aoo (A~0 + A~1) + A~o (A2o + A21)J 

+ (V51 7) J222 (q) (A2o + A21) (2A~0 + A~1 )}, (11) 

and for the % - % transition 

Hit = (V5 I 7) J222 (q) (A21 + A22) (A~2 + A~1), (12) 

where 

J220 = 3v\o {<qr~ )2 [(qr~ )2 - 4] exp [- (qr~ )2!2] 

~ ' 2 

_ 12 V: L1te2 (_!i) a (_!,o-) 8 f1 (qr 0 ) } 

5 V0 R0 Ro r0 · qro 

and 

J 222 = ~ {(qr~ )2 [7- (qr~ )2 ] exp [-I qr~ )2 /2] 

_ _i_ V~e2 (~)2 a'(~·) 8 ft (qro) If, 
5 V0 R 0 Ro r0 qro 

with 
CXl 

a(:: ) = \ e-x'fzx6 (1 - x;) dx, 
f 0 /f0 

00 

a' ( ~") = ~, e-x'lzx8dx. 
r0jr 0 

It is readily seen from (12) that in the %·-% 
transition the relative angular distribution is inde
pendent of the deformation parameter, since the 
latter influences only the coefficients Aik and 
Aik• which pertain to levels a 1 and a 2 respec
tively. 

Let us compare the results obtained with the 
experimental data. In the case of Mg24 , as indi
cated above, only the Y2 - 1/ 2 transition is pos
sible in the presence of deformation. Curve 1 of 
Fig. 1 shows the theoretical angular distribution, 
obtained on the basis of Eq. (11) at 6 = 0.2; the 
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FIG. 1 

vertical lines represent the experimental values 
of the cross section. 1 (We have replaced the exact 
value 6 = 0.17 by the approximate value 6 = 0.2, 
since the wave functions available in the literature4 

have been tabulated for 6 in the interval from 0.3 
to - 0.3 in steps of 0.1 ) . In plotting curve 1, we 
have assumed for the electric radius of Mg24 a 
value5 r 0 = 6 x 10-13 em. It is easy to see that 
the presence of a maximum in the angular distri
bution is determined essentially by the nuclear 
term of the interaction, and the location of the 
maximum depends substantially on R0• We deter
mine the parameter V0 from the condition that 
the maximum point on the theoretical curve coin
cide with the corresponding experimental value of 
the cross section at the same scattering angle. At 
6 = 0.2 we obtain V0 = 0.94 Mev. The angular 
distribution at negative deformation, 6 = - 0.2, 
differs little from the distribution at 6 = 0.2. 
Taking the same value V~ = 0.94 Mev, the only 
difference is that the magnitude of the maximum 
cross section in the case of 6 = -0.2 is approxi
mately one order of magnitude less than for 6 

= 0.2, and the position of the maximum is shifted 
approximately 10° towards the larger angles. 

As seen from Fig. 1, the theoretical curve 1 
is in satisfactory agreement with the experimental 
data, both with respect to the position of the maxi
mum and with respect to its shape, in the interval 
of angles from 0 to 70°. Thus, allowance for the 
Coulomb interaction has improved the agreement 
between theory and experiment in the region of 
small angles. It should be noted that we would 
obtain for the parameter 6 a different value were 
we to stipulate that the experimental value of the 
maximum cross section coincide with the point of 
maximum not on the curve corresponding to the 
deformation parameter 6 = 0.2, but on the curve 
corresponding to the deformation parameter 6 

= - 0.2. It can be shown, however, that this would 
not influence the position of the maximum, since 
in this respect the angular distribution shows 
poorer agreement with experiment in the case of 
negative deformation. 

Figure 2 shows the angular distribution of pro
tons inelastically scattered by Si 28 • As noted 
above, we have in this case Y2 - 1/ 2 transitions 
with deformations 6 = 0.1 and 6 = - 0.3, and 
%-% transitions with deformations 6 = 0.1. 
The theoretical angular distributions differ little 
from each other in all cases. We therefore show 
only one curve, corresponding to the Y2 -% 
transition with a deformation parameter 6 = 0.1. 
If V0 is determined here, too, from the condition 
that the maximum point on the theoretical curve 
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correspond to the experimental value,6 we find 
that, unlike Mg24 , allowance for the Coulomb in
teraction does not lead to any significant correc
tion. (We obtain here V0 = 12.2 Mev.) Therefore 
agreement is obtained with experiment only as re
gards the position of the principal maximum. As 
to the magnitude of the cross section, we indicate 
that the principal maximum value in the case of 
Y2-% and %-% transitions with deformation 
parameter o = 0.1 and the %-1,12 transition 
with deformation parameter o = -0.3 are related 
approximately as 1:10:30 if we take for all the 
cases the same value of V0, namely 12.2 Mev. 

5. It is easy to obtain the angular distribution 
of inelastically scattered protons by Mg24 and Si 28 

under the assumption that the collective level is 
excited, provided we use the previously derived5 

formula, which pertains to the scattering of deu
terons. Modifying this formula to account for the 
fact that we deal here with proton scattering, we 
obtain 

dcr 2 (VoR~)2 2 • / • Q [ 
dD =fL ~~ V 1-r-£; f2(qRo) 

+ 0,6Ze2 f, (qro)] 
RoVo qro • (13) 

In reference 5 we used a value of (3 determined 
from energy of the rotational level. Considering, 
however, that the value of (3 thus obtained is ap
proximately twice the experimental value of the 
deformation, we use for Mg24 (3 = 0.42.3 It must 
be noted, that the deformation parameter o 
= 0.95(3, determined from the energy of the single
particle level, differs from the deformation deter
mined from the data on collective excitation. This 
is natural, since by attributing the entire excita
tion of the nucleus to one particle, it is necessary 
apparently to make a corresponding change in the 
field of deformation. 

Curve 2 of Fig. 1 shows the angular distribution 
obtained from Eq. (13) for Mg24 • The first term of 

this equation corresponds to the nuclear interaction. 
The angular distribution due to this interaction has 
a maximum, something not obtained with the Cou
lomb interaction. The position of the maximum 
in the angular distribution, with allowance only of 
the nuclear term in the interaction, is independent 
of the parameter V0 and is close to 80°. If we re
quire here that the value of the cross section at the 
maximum of angular distribution coincide with the 
corresponding experimental value of the cross sec
tion, then the parameter v0 is found to be suqh 
that the Coulomb term influences the distribution 
only at small angles, and does not change the posi
tion of the maximum. An analogous result is ob
tained also in the case of Si28 • Here, too, the posi
tion of the maximum of the angular-distribution 
curve is independent of the parameter v0 and is 
close to 80°. 

After comparing the results obtained for single
particle and collective excitationSoj we can arrive 
at the following conclusions: 

1. For the same value of the radius of the equi
librium sphere, on which the angular distribution 
depends substantially, the position of the maxima 
in the distribution are found to be different, de
pending on the character of excitation of the nu
cleus. For the value we have assumed, R0 = 4.2 
x 10-13 em, the maximum in the angular distribu
tion for Mg24 , in single-particle excitation, is 
close to the origin and is in better agreement with 
the experimental data. When R0 is increased, 
the maximum in the angular distribution shifts in 
both excitations towards the smaller angles. For 
example, at R0 = 6 x 10-13 em, the position of the 
maximum in the angular distribution, in the case 
of collective excitation, is in better agreement with 
experiment, but such a value of R0 must be con
sidered as excessive and not in agreement with 
other data. 

2. In our method of analysis, the presence of a 
second maximum on the experimental curve of an
gular distribution cannot be explained for either 
case of excitation. 

3. The relative angular distribution, connected 
with the collective excitation, is independent of the 
magnitude and sign of the deformation, whereas in 
the case of single-particle excitation such a de
pendence exists, although it is weak. 
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