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The electromagnetic interaction of electrons in a thin relativistic bunch in coherent radia
tion in a synchrotron is considered. The tangential forces exerted on an individual electron 
by the bunch are considered for different particle phase distributions. 

EARLIER1 we have considered the coherent ra
diation spectrum of an electron bunch in a syn
chrotron. By summing the intensities of the in
dividual harmonics for the entire spectrum it is 
possible to compute the total power associated 
with the coherent radiation for a given electron 
distribution in the bunch. This calculation has 
been carried out by Schiff for the case of a Gauss
ian distribution. 2 Schwinger has carried out this 
calculation for the case of a rectangular distribu
tion and the results are given in reference 3. It 
is also of interest to compute the effect of the co
herent radiation on the bunch. It is clear that 
when the coherent radiation becomes sizeable it 
must have an effect on the motion of the particles 
in the bunch. Coherent radiation arises as a re
sult of the electromagnetic interaction of electrons 
within a bunch; hence the problem of determining 
the effect of coherent radiation on a bunch means 
essentially determining the tangential component 
of the electromagnetic forces exerted by the bunch 
on an individual electron. An accurate calculation 
of these forces for a bunch with an arbitrary dis
tribution of particles, in which the phase and beta
tron oscillations are taken into account, is not 
feasible. However, two particular cases have 
been solved by Tamm4 and Rytov. 5 These are for 
bunches which are segments of toroids or ellip
soids which move as a rigid body (common angu
lar velocity) and which have a uniform electron 
density. 

In the present paper it is assumed that all the 
particles in a bunch move in coaxial circles with 
a uniform linear velocity, v ~ c. This means that 
we can neglect betatron oscillations and the in stan
taneous spread in particle energy. This approach 
is justified because in practice the thickness of a 
bunch in a synchrotron is much smaller than its 
length. Hence, in the first approximation, the 
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transverse dimensions do not appear in the ex
pressions for the tangential forces. 

We neglect the interaction of the bunch with the 
chamber walls, the pole pieces of the magnet, and 
the other constructional elements, assuming that 
the electrons move in an infinite free space. As 
long as the longitudinal dimensions of the bunch 
are small compared with the transverse dimen
sions of the chamber it is valid to neglect the 
effect of the wall on the inter-electron interaction. 
In cases in which the bunches are large compared 
with the cross section of the chamber the interac
tion with remote electrons is affected by the shield
ing of the walls and the present results cannot be 
applied directly. 

The calculation of the tangential forces in co
herent radiation has acquired new interest in con
nection with the experimental work being carried 
on in many laboratories on the formation and main
tenance of electron bunches. 6 

1. INTERACTION BETWEEN TWO CHARGES IN 
A BUNCH 

First we determine the interaction between two 
charges. We use the coordinate system used in 
reference 1. Call A the point of observation; at 
a given time tA, this is the location of the charge 
which experiences the interaction with a second 
charge (radiating charge) located at point P. 
The effective source point of the field of the second 
charge, corresponding to the interaction at point A 
at time tA, is designated Q; the corresponding 
time, which precedes tA, we call tQ. We use a 
four-dimensional notation and denote the corre
sponding world points by XAi; xpi; XQi (i = 1, 2, 
3, 4 ). We introduce the 4-vector Ri = XAi- XQi· 
Since XAi and XQi lie on one light cone, R~ = 0. 
Using the 4-dimensional Lienard-Wiechart poten-
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tials Ai = - eui /Rkuk, where ui = dXQi /dsQ is 
the 4-velocity of the charge Q, it is easy to ob
tain an expression for the Lorentz 4-force acting 
on the charge A: 

f; = -~JI ~- (1 + Rkwk) (ukvk) J R 
c li (Rk uk)2 (Rkuk)S ' 

(1 + Rkwk)(Rkvk) Rkvk } 
+ ( Rkuk)a U;- (Rkuk)2 W; . 

(1) 

Here Wi = dui I dsQ, while vi is the 4-velocity of 
charge A. We assume further that charges A and 
Q have the same velocity v and move in coaxial 
circles characterized by radii rA and rQ. In the 
case in which rA = rQ, i.e., when the orbits of 
the electrons lie on the common cylindrical sur
face, fi = - Bci>/BxAi• where the convection scalar 
potential 

<P=- e21+Rkwk=~e2 1-~2 (rA/rQ)cos!; 
c Rkuk c R- ~r A sin!; ' 

(2) 

~=V/C; j=(J--~2)-'1'; ~=~A-~Q' 

R = [(z A- zQ) 2 + (r A- r Q)2 + 4r Ar Q sin2 (~ 1 2)]'1•, (3) 

and R is the distance between points A and Q. 
Equation (2) is similar to the potential derived by 
Tamm for motion with a common angular velocity. 4 

When r A »' rQ the force given by Eq. (1) is 
not deriveable from a potential. However one is 
easily convinced that the projection of (1) on the 
tangent to the orbit at A coincides in direction 
with the derivative of (2). The usual Lorentz 
forceisgivenby f=(c/y)fa (a=1,2,3). It 
follows from the above that the tangential compo
nent of this force is 

(4) 

Hence, although the force given in (1) cannot be de
rived from a potential the expression in Eq. (2) 
may be taken as a "potential for the tangential 
forces." One is easily convinced that the expres
sion ( e2/c) UkVk /RkUk is the "potential for the 
axial forces" for (1) in the same sense as (2). The 
phases at points A, P, and Q are related by the 
retardation condition 

~ P- ~A + (; = ~R I r Q" (5) 

Taking account of Eqs. (3) and (5) and the fact that 
rQ = rp and ZQ = zp, the force given by (4) may 
be considered a function of the coordinates of points 
A and P. 

We derive an explicit expression for the force 
(4) for the simple relativistic case in which both 
electrons lie on one circle, i.e., rA = rp =a; 
z A = z p = 0 (the case considered by Tamm). Let 

1/JAP = 1/JA -1/Jp > 0, i.e., the charge A, on which 
the force is exerted, lies in front of the radiating 
charge P. If %Y1/JAP « 1, 

(6) 

(7) 

As is well known, % yc/a = Wmax is the frequency 
at which the maximum radiation energy of a single 
electron is radiated. Hence the condition % y31f! AP 
» 1 is satisfied if points A and P are separated 
by a distance large compared with 7tmax = c/wmax; 
in this case the coherent force (7) is greater than 
the Coulomb force e2/y2a21f!iP· When 1/JAP < 0, 

e2 e2 e2 

f ... = - r2a2<)1~p + 8a2 + 2"a2 ~~p ••• 
(8) 

2. ACTION OF THE BUNCH UPON AN INDIVIDUAL 
ELECTRON 

In order to obtain the total tangential force I 7 

exerted on charge A by the entire bunch, it is 
necessary to sum (4) over all electrons in the 
bunch. At distances much larger than the mean 
distance between the charges near point A the 
summation may be replaced by integration over 
the coordinates of point P. 

Let the particle distribution in the bunch be 
given by the function F (1/J, r, z ). For the time 
being we neglect the region in the immediate prox
imity of A; thus 

oo +oo 

f .. (~A,rA,zA)=-e2 a:A~drP ~ dzP 
0 -00 

(9) 

In Eq. (9), carrying out the integration over ~ in 
place of 1/Jp, using Eq. (5) we have 

where R is given by Eq. (3). 
We must now make certain assumptions as to 

the bunch. We assume that F (1/J, r, z) 
=Ncp(I/J)U(p,z), where p=r-a (a istheradius 
of the stable orbit). We assume that U (p, z) is 
an even function of p and z. Then the normaliza-
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tion condition is 
co 00 

a ~ ~ U (p, z) dp dz = I. 
-co-co 

We assume that the mean radius for the cross sec
tion of the bunch is 

00 co 

a0 =a ~ ~ V p2 + z2 U (p, z) dp dz ~a. 
-00-00 

The effective angular dimensions of the bunch are 
1f 

characterized by the quantity ~0 = 2 J 1/Jcp ( 1/J) d¢. 
0 

From reference 1 it follows that in the case of 
small oscillations ~0 = 2<I>0 /1r, where <I> 0 is the 
mean amplitude of the phase oscillations. 

We consider an extended bunch, i.e., the case in 
which a~0 » u0; we will be interested in points A 
close to the stable orbit, where PA"" ZA ~ u0• We 
assume that cp ( ljJ) is a smooth function so that 
it does not vary significantly at distances at:.¢ 
,..., uo. Then, in Eq. (10) we change the argument: 

rt A-~+ ~R I r p]-+ rt A- H- 2~ I sin(~ I 2) IJ. 

We now expand (10) in a series in powers of PAia 
""ZA/a ~u0 /a « 1. We limit our consideration to 
the first and linear terms in the expansion. Because 
U (p, z) is even, (10) is an even function of zA. 
Hence in the expansion we eliminate the term which 
is linear in ZA· The linear term in PA remains. 
First we consider the first term of the expansion 

+oo +oo 
fr(tA) = -Ne2 d:A ~ ~ dpdzU(p, z) 

-oo -co 

f 1- ~2 cos~ [t - ~ -L 2~] sin l_ ~-~· d~ 
X ~ Vp2+z2+4a2sjn2(~/2) 9 A ' 2 . 

-1t 

(11) 
For simplicity we assume that the bunch is circu
lar in cross section with a radius u and has a 
density which is constant over the cross section. 
Then we can carry out the integration over u and 
z in Eq. (11). For values of ~0 which are not too 
large, we replace the trigonometric functions in the 
first term by their series expansions. We have 

X 9 [t A-~+~ I~- i~ I J d~. (12) 

The term with y-2 gives the Coulomb force; the 
term with {32 ~ 2 /2 gives the coherent force. First 
we consider the latter: the quantity in the curly 
brackets in Eq. (12) can be replaced by its limiting 
value for u- 0: ! (u /a )2 1 ~ 1-1• In the ultrarela
tivistic case y » 1, the argument cp ( ljJ) in (12) 

(with ~ > 0) assumes the form 

t A-~/ 2j2 - ~3 I 24 ~ t A- ~3 I 24, 

if ~ » 1/y and, if ~ < 0 it assumes the form 
ljJ A- 2~. Hence, for bunches characterized by 
y-3 « ~0 < 1 the coherent force is 

co 
1 Ne2 d \ 

- S (12 d<ji A J 9 (~A + ~) ~d~. 
0 

(13) 

The first term in Eq. (13) gives the contribution 
due to the interaction of charges lying behind charge 
A while the second term gives the contribution from 
charges lying in front of it. Since cp ( 1/J) "" 1/~0 • 

in Eq. (13) the first term is of order Ne2 /a2~:/3 

while the second term is approximately Ne2 /a2• 

Consequently, when ~0 « 1 the second term can 
be neglected. Strictly speaking, directly at the 
end and behind of the bunch this procedure is not 
justified; however, for the main part of the bunch 
and the space in front of it, when y - 3 « ~0 « 1 
we may assume 

00 

- _ 2 N e2 d \ 1 d~ 
f ~ - - 3'/, (i2 d<ji A J 9 ( Cji A - ~) ~·;,-- • 

0 

(14) 

For ¢A» ~0 , i.e., far in front of" the bunch, from 
~q. (14) we obtain the asymptotic expression for 
fT, which coincides with (7); behind the bunch we 
have fT ~ 0. The Coulomb term in Eq. (12) is of 
order ( Ne2 /y2a2~ij) ln ( a~0 /u). Since the loga
rithm is always relatively small, the smallness 
of the Coulomb forces as compared with (14) gives 
the condition ( ~0y3 )¥3 » 1. This is almost the 
same as the condition ~0 » y-3• 

Calculation of the term which is linear in p A 
in the expansion in (10) shows that it makes a con
tribution of order ( PA /a) Ne2 /a2~ij. As long as 
p A « a~0 this term can be neglected in com pari
son with (14). Consequently, (14) is the main com-
ponent of the force being sought. . 

Summing the tangential forces which act on the 
individual electrons for the entire bunch we obtain 
the total reaction force on the bunch for the coher
ent radiation. Multiplying this force by the velocity 
of the bunch we find the total power of the coherent 
radiation. In particular, in the case y-3 « ~0 « 1, 
using Eq. (14) we have 

00 co 

2 Ne2c \ d~ d \ ,1, (15) 
Wcoher =- 3,;, (i2 J ~·;, d; J 9 (o/ A) 9 (o/ A- f;) d't' A' 

0 -oo 

It is easier to compute the total power of the coher
ent radiation from Eq. (15) than by summing the in-
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tensities of the spectral harmonics. Furthermore, 
making the calculation by means of Eq. (15) serves 
as a good check on the validity of the expression 
for the tangential forces. For example, for a 
Gaussian distribution 

1 { 1 <¥ 2} cp(4)=-exp ---1-) , 
rriio "' \ .So 

we have 

W _ 2'1• r (5/ 6 ) Ne2c 
coher - 3'/, v" a2 (2 v"' ilo)'/,' 

which coincides with the result obtained by Shiff.2 

For a rectangular distribution we also get ex?wt 
agreement with the results obtained by Tamm4 

and Schwinger (cf. reference 3). 

3. CALCULATION OF THE FORCES FOR CER
TAIN MODELS 

We now use Eq. (14) with various phase distri
butions, assuming that y-3 « J-0 « 1. 

For a rectangular distribution 

cp(4)= 1/4.&o, jcj>j<:;;2&o; cp(cji)=O, lcj>j>2&o, 

and, using the notation 1(; A /2.9-0 = p1, we find 

- Ne2 

f T = - 3'1• a2 (2il0)'/, X (pi); 

Pl<-1 

-1 <Pl < 1 . 

(0; 

Z 'P) = .J (p -'·· 1)-'i,. 
. \ 1 1 1 ' ' 

~- [(Pl- 1 )-';,- (Pl -i !)-'/,]; p1 > 1 (16) 

The discontinuities at the points 1(; A = ± 2.9-0 are 
due to the fact that the assumption concerning the 
slow variation of the bunch are not satisfied at 
these points and Eq. (14) cannot be used. It is 
this distribution which was considered by Tamm 
and Rytov and they have shown that the region 
close to the ends of the bunch does not make an 
important change in the basic expression for the 
forces (16); at the discontinuities there are sharp 
maxima. 

We consider a triangular bunch: 

cp (cj>) = 3;J 1- 3~J' 
0 < 4><3&o, cp (cj>) = 0, 4 > 3&o, cp (- 4) = cp (4). 

Using the notation p2 = lfJA /3.9-0, we have 

0 
(p2 _:__ 1 )'/, 

[(P2 + 1)'1'- 2pY'J 
[(p2 + 1 )';,- 2p~' + (P2- I )'1'] 

P2 <-1 

--1 < P2 < 0 

0 < P2 <I 
p2 > 1 (17) 

For a Gaussian distribution 

00 

( ) d I { ( 2 d~ X Pa = dpa J exp - P3- ~~ } e';, 

0 " 

' 00 _ e-P \.1 !' (n I 2 -1/G) 
= -6 LJ I (2p3Y· n. 

n=O 

YA 
P3 = v--" , r: vo 

(18) 

The results obtained in (16)- (18) are shown in 
the three graphs. In each of these the dashed 
curves represent the distribution over phase for 
the particles in the bunch and J-0 is identical in 
all cases. The force scale is the same throughout. 
The arrow indicates the direction of motion (to 
the right). It is apparent from these curves that 
the main losses in coherent radiation occur at the 
rear of the bunch. On the other hand, the electrons 
in the front part of the bunch may obtain additional 
energy by virtue of the interaction. 

4. INTERACTION AT CLOSE DISTANCES 

In conclusion we shall concern ourselves with 
calculating the interaction at close distances. 
Strictly speaking we can obtain the total force 
acting on the charge A if, in Eq. (9), we exclude 
from the region of integration a sphere with center 
at A and radius much larger than the mean dis
tance between electrons o and add the force due 
to the interaction of A with the remaining charges 
within the sphere. The latter force can be com
puted by means of Eq. (4). Carrying out this op
eration we find that in addition to the force indi
cated by (9) the electron at A experiences a force 
f07, directed along its line of motion. With o » 
a/y: f07,..., (e2/a2)(a/o)4/3 and when o « a/y, 
y » 1 this force approaches the value ( 2e2 /3a2 )y4, 
i.e., it compensates for the dissipation force due to 
radiation. 
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For a bunch characterized by J 0 « 1 the force 
f6T can be neglected compared with that given in 
(14) if N5/ 9 » (aJ0/a0 )8/ 9• On the other hand, for 
a circular current uniformly filling the entire 
circle, (9) vanishes and f6T determines the total 
force exerted on the electron at A by the bunch. 
Since there is no coherent radiation in this case, 
with o « a/y3 the radiation will be determined 
completely by the fluctuations in the density of 
electrons in the bunch. For present-day electron 
synchrotrons, in which y ·" 103 and a,..., 1 m, the 
case o « a/y corresponds to a particle density 
of approximately 1021 em - 3; this is far beyond 
what can be achieved. However, at smaller ener
gies (y"' 10) and very small cross sections it is 
possible that o « a/ y3• In this case (very small 
electron densities ) there should be correlation in 
the distribution of the particles in the bunch and 
the fluctuation in the density should be smaller 
than for non-interacting particles. Hence the 
average losses due to radiation for one electron 
should be smaller than ( 2e2c/3a 2 ) y4• However 
this problem requires further analysis. 

The authors are indebted to Academician I. E. 
Tamm for making us acquainted with the results 
of his unpublished work.4 
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