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Quadrupole spin-lattice relaxation of nuclear spins in liquid solutions of diamagnetic salts 
is considered theoretically. The calculations are performed under the assumption that 
stable complexes are formed around ions, these complexes consisting of molecules of the 
solvent or of molecules of the solvent and anions (or cations) simultaneously. It is found 
that lattice relaxation of the nuclear spin of the central ion is due to normal vibrations of 
the complex if the addends of the complex are identical particles, and by diffuse rotation 
if the addends are different particles. The calculated magnetic resonance line widths agree 
with the experimental data for aqueous solutions of Al3+ and Ga3+ salts. The resonance 
line widths of weakly hydrated ions ( Na +, Br-, I-) are related to the times of stable ex
istence of the corresponding complexes. 

1. MECHANISM OF QUADRUPOLE SPIN -LATTICE 
RELAXATION IN DIAMAGNETIC IONIC SOLU
TIONS 

IF the nucleus of a diamagnetic atom (or ion) 
possesses an electric quadrupole moment, energy 
is exchanged between the nuclear spin and the lat
tice (spin -lattice relaxation) as thermal motion 
causes changes in the quadrupole moment energy. 
Van Kranendonk1 has calculated the quadrupole 
relaxation time of nuclear spins in crystals and 
Masuda2 has performed a similar calculation for 
molecular liquids. In the present paper the quad
rupole relaxation time is calculated for ionic 
liquid solutions of diamagnetic salts. 

In ionic liquid solutions the immediate neighbor
hood of a positive (or negative) ion most fre
quently consists of six particles surrounding the 
ion in the form of an octahedron; these are mole
cules of the solvent or anions (or cations). We 
assume that a stable ionic complex endures 
longer than the spin-lattice relaxation time of 
the ionic nucleus. It is then evident that in study
ing the spin -lattice relaxation of the central ion 
we must first consider the thermal motions of 
members of the complex. The thermal motion 
of the complex consists of internal vibrations and 
diffuse rotation, both of which can result in relax
ation of the nuclear spin. Diffuse rotation of the 
complex is found to play the principal part in 
quadrupole spin relaxation in mixed complexes 
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consisting of different addends.* On the other 
hand, in complexes consisting of identical addends 
quadrupole relation results from the internal ther
mal vibrations of the complex. 

Let us consider an ion located at the center of 
a mixed complex consisting of water molecules and 
anions. The strong inhomogeneous electric field 
at the center of the mixed complex will act on the 
nuclear quadrupole moment to induce quadrupole 
splitting of the ion's spin levels superposed on the 
Zeeman splitting. The magnitude of the quadru
pole splitting depends on the orientation of the 
axes of the complex with respect to the external 
magnetic field; therefore Brownian rotation of the 
complex will change the splitting in a random 
fashion, which results in an energy exchange be
tween the spin and thermal motion of the lattice. 

When the addends of the complex are identical 
the electric field at the center of the octahedron 
will possess cubic symmetry and will not induce 
splitting of the nuclear spin levels. Therefore ro
tation of a complex with identical addends cannot 
result in spin relaxation. In this case we must 
consider the internal vibrations of the complex, 
as a result of which the symmetry of the electric 
field at the center of the octahedron is disturbed 
in a time-dependent manner. The splitting of the 
spin levels is consequently time -dependent, and 

*An addend is a diamagnetic particle in the first coordina
tion sphere of the ion. 
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spin relaxation results. 
In mixed complexes spin relaxation is obvi

ously produced by both the rotation and internal 
vibrations of the complex, but we shall see below 
that the vibrations play a subordinate part. 

In real solutions mixed and unmixed complexes 
exist simultaneously. Thus Connick and Poulson3 

have shown that aqueous solutions of NaF and 
Al (N03) 3 contain approximately identical numbers 
of the complexes Al(H20)~+, Al(H20) 5F 2+ and 
Al (H20)4F2. It is noteworthy, however, that the 
intensity of magnetic resonance absorption in Al27 

nuclei is proportional to the number of hydrated 
Al(H20)~+ complexes. It is evident that Al27 quad
rupole relaxation in mixed complexes is very rapid 
and that absorption by these nuclei is not observed 
because of the extremely large line width. This 
has been confirmed by our calculations for Al27 

and a number of other ionic nuclei. 

2. SPIN-LATTICE INTERACTION ENERGY OF 
NUCLEI HAVING AN ELECTRIC QUADRUPOLE 
MOMENT 

The quadrupole part of the energy of any 
charge system (such as an atomic nucleus ) in 
an inhomogeneous electric field induced by exter
nal charges is the scalar product of two symmet
ric second-order tensors -the tensor of the 
nuclear quadrupole moment, Dik• and the tensor 
of the electric field gradient at the nucleus, (Y'E )ik 
= B2cp/BxiBXk:4 . 

(1) 
i.k 

In the representation in which I2 and I are diag
onal the five independent components of the nuclear 
quadrupole moment tensor Dik can be given in 
terms of the nuclear spin projection: 

D0 =+C(3I!-I(!-, !)), 

C=eQ'/(21-!), (2) 

where Q is the nuclear quadrupole moment. 
With the coordinate origin at the center of 

mass of the given nucleus, r A (xA, YA• zA) 
will denote the radius vector of an outside charge 
eA. The independent components of the tensor 
(V'E )ik are then 

(vE)0 = ~ 3eAr:45 (3z51- r~). 
A 

(3) 

We now denote by sA (XA, YA, ZA) the change 
of distance between the given nucleus and the 
charge e A which results from internal thermal 
vibrations of the complex. SA will obviously be 
small compared with the equilibrium distance r~ 
between the nucleus and charge; the tensor com
ponents (V'E )ik may therefore be expanded in 
powers of the projections of the s A• and for our 
purposes the linear term is sufficient. The form 
of the expansion is simple when the cubic axes of 
symmetry of the complex are the coordinate axes 
x, y, z; the equilibrium separation ri is then 
represented by 

r~ (a, 0, 0), ~~ (0, a, 0), r~ (0, 0, a), 

r~(-a,O,O), r~(O,-a,O), r~(O,O,-a). 

Furthermore, in an unmixed complex all addends 
are identical and possess identical effective charges 
eA = e', in which case we also have the identities 

(vE)~A-o = (vE)f~-o = (vE)t,~-o = 0. 

It follows easily from the foregoing that 

(vE)0 = 18 V3 (I -+- r) e' a-4Q3 , 

(vE)±1 = 6 (I + i) e'a-4 (Q5 ± iQ"), 

(vE)± 2 =f(l +r)e'a-4 (-3Q2 ±2iQl). (4) 

Here Qi are the orthogonal normal vibrational co
ordinates of the complex which were first introduced 
by Yost et al: 5 

Qs ~~ (Z1- Z4 !-X a- X 6) I 2, 

Qf] = (Ya-Y 6 + Z2 - Z5 ) I 2. (5) 

The factor ( 1 + y) in (4) takes antishielding into 
account; the inhomogeneous field of the outer par
ticles distorts the electron shell of the central ion, 
creating an additional inhomogeneous field at the 
nucleus which is similar to the field of the outer 
particles. This effect must obviously be taken 
into account in calculating the relaxation time of 
nuclear spins. Antishielding factors y have been 
calculated theoretically for a majority of ions pos
sessing a nuc~ear quadrupole moment. 6 

The part of the energy of the quadrupole mo
ment which is dependent on the lattice coordinates 
and on time may therefore be represented by the 

2 

sum JC' = :6 Jei, where 
i= -2 
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:!f(~ = 3lf3 A (3I;- I (I+ 1)) Qa, 

M~ = fA {fzl tHQ.; + iQs). 

M'::: 2 = fAt; (- 3Q2 + 2iQ4), 

~'- = ee' ( 1 + r) Qa-4 I I (2I- 1 ). (6) 

In liquids only nuclear magnetic resonance can 
be observed since the quadrupole interaction of the 
nucleus varies randomly because of thermal mo
tion and cannot induce constant splitting of the nu
clear spin levels. The integrals of motion of a 
spin in a strong magnetic field are the values of 
12 and of the projection lz' in the external field 
direction. Therefore the spin variables in the 
right member of (6) must be transformed to the 
laboratory coordinate system x'y'z' with z' in 
the external magnetic field direction. If e and 
cp are the polar angles of the z' laboratory axis 
in the xyz coordinate system of the ionic complex, 
after a simple transformation of the components of 
I we obtain 

I~= eHi, [!_;. cos2 8-- I!· +Ux•Iz·} sin 8 cos 8=t=i Ux·Iu·} cos fl 

=f i Uz·Iu·} sin 8 +I!· sin20], 

{l 2 I±} =e+i'~'[(I!·-f;.)sin28=fi{JAu·} sin 8 

+ UAz·} cos 28 =t=i Uz·Iu·} cos 8J, 

(7) 

The primes in (7) will hereinafter be omitted 

3. RELAXATION TRANSITION PROBABILITIES 

The perturbation (6) contains both spin vari
ables and lattice variables of the system; the latter 
are the normal internal vibrational coordinates Qi 
of the complex. The remaining lattice coordinates, 
which do not interact directly with the spin vari
ables, interact with the Qi coordinates and ulti
mately determine the character of their time de
pendence. Thus in liquids the Qi interact with the 
random Brownian motion of particleE~ surrounding 
the complex; this determines the random, fluctu
ating temporal variation of Qi. 7 

The probability that the perturbation JC' ( t) in
duces a transition of the system from the state l 
to the state k in one second will be calculated by 
means of the familiar perturbation formula 

t 

Wtk = 1~2 ~ ~ ::;e;k (t') exp (- iwtkt') dt' 1
2 

, (8) 
6 

where wzk = (Ez-Ek)/n. When, as occurs in our 
problem, the matrix element 3Czk ( t) is a random 
function of time, (8) can be transformed by intro-

ducing the correlation function8 

G (-c)= :Jf~k (t') :Jf~" (t'- "C). 

Then 
+co 

Wtk=h-2 ~ G('t)exp(-iwzk"C)d"C. (9) 
-co 

Denoting the characteristic correlation time by T c 
as usual, we represent the correlation function as 
decreasing exponentially: 

G (':) = G (0) exp (-I "C I I "c)· (10) 

The transition probability is then given by 

Wtk = h-2[ ::;e;k /2 2-rc/ (1 + C!JJk-c~). (ll) 

The bar denotes averaging over all possible values 
of the coordinates Qi, e, and cp. The time Tc 
in (10) and (ll) characterizes the damping of vibra
tions of Qi· Al'tshuler and the present author7 have 
shown that Tc ~ 1/y, where y is the vibrational 
line width in the optical spectra of liquid ions; Tc 
is of the order 10-12 sec. The temperature varia
tion of Tc obeys a T-1/2 law approximately; this 
reflects an increase in oscillator damping result
ing from a temperature-associated increase in the 
number of collisions between the complex and 
neighboring Brownian particles. 

We shall now calculate the coefficients in (ll). 

The matrix element ~.m-1 corresponding to 
the relaxation transition m - m - 1 is 

:Yt~. m-1 =A Uxfz}m, m-1 [Qa (- 9 V3sin fJcosO) 

+: (Q5 +iQ6)e-i'~'(cos2B-cosfl) 

+ -f (Q5 - iQ6) ei'~' (cos 20 +cos 8) 

-:- -f (- 3Q2 - 2iQ4) e- 2i'~' sin B (cos 8- 1) 

+ -f (- 3Q2 + 2iQ4) e2i'~' sin 0 ( 1 +cos 8)]. (12) 

In averaging the square of this quantity the orthog
onality of the Qi coordinates must .be taken into 
account. It is not actually possible to establish 
the differences between the normal frequencies 
Woi and masses mi of individual Qi oscillators; 
we therefore assume the following identical statis
tical mean square amplitude for all Qi oscilla
tors :9 

Q7 = Q2 = (h / 2m<>J0 ) coth (h(•Jo 2kT), (13) 

where m and w0 are mean values, with m close 
to the mass of the entire complex. The normal vi
brational frequencies w0 of octahedral complexes 
of transition group ions in liquids lie in the range10 

(4-16) x 1013 sec-1• 

The result obtained by averaging is 
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We obtain similarly: 

:Je~. m-2 =A (I!)m, m-2 [Q 3 • 9 V3 sin2 8 

- 3 ( Q5 + iQ6) e-icp sin 8 (I + cos 0) 

+ 3 (Q5 - iQ6) eicp sin 8 (I- cos 8) 

+ 314 (- 3Q 2 + 2iQ4) e-2i'P (I- cos 8)2 

- 3 /4 (3Q2 + 2i Q 4) e2i"' (I + cos 8)2]. 

[S"t'~. m-2/2 = (I 023/ 5) i (I;)m, m-2/2 A 2Q2. 

(14) 

(15) 

(16) 

Nonvanishing transition probabilities subject to the 
condition w1k T~ « 1 are 

I= 3/ 2 : w(%, 1 / 2) = w(-%, - 3/ 2 ) = 309U, 
w(3/2,-1h) = w(l/2,-3h) = (3069/ IO)U. (17) 

I= 5/ 2 : w(%, %) = w(-%, - 5/ 2 ) = 2060U, 
w (3/ 2 , 1 / 2) = w (- 1/ 2 , -%) = 824U, 
w (5/ 2 , 1/ 2 ) = w (-1/ 2 , - 5/ 2 ) = 1023U, 

w(3;2, -\'2) = w (1/ 2 , - 3/ 2 ) = 4.5-1023U, (18) 

where U = :n-2 A2Q2rc. 

4. CALCULATION OF THE TIME T1 AND OF 
THE LINE WIDTH 

The table contains experimental data on relaxa
tion times or magnetic resonance line widths for 
nuclei with quadrupole moments in aqueous ionic 
solutions. A resonance line whose width is deter
mined by the spin-lattice interaction possesses 
Lorentz shape and width llv = 1/7rT1•11 In order 
to estimate the line width we calculate the time 
T 1, using the transition probabilities (17) and (18). 

The spin-lattice relaxation time T1 is obtained 
from the relation T11 = a/C, where 01. is the co
efficient of thermal conductivity between the spin
system and the lattice, and C is the specific heat 
of the spin-system. Substituting the known formu
las for 01. and· C, we obtain 12 

r-;1 = (2I + I) ~ w,k (E,- Ek) 2 j ~ (E,- Ek) 2 • (19) 
l>k l>k 

This equation is valid when Ez- Ek « kT, which 
is always fulfilled in our problem. By means of 
(17), (18), and (19) we obtain for spins % and %. 
respectively: 

Salts in 
aqueous so-

lution 

1 Cl 3 } 
12(SO,)s 

A 
A 
G 
G 

1aCl 3 
aC1 3 

I Experimen-
Ions tal line 

I width, kcs 

(AJ2')"+ 5 p•j 
(Ga09 )3+ 7 [17 j 
(Ga71 )"+ 3 [17] 

y-1 = 2031~ [ee' (1 + Y) Qj'2 -Q2 /t-2_ 
1 7 I (2I -1) a• ~c, 

(20) 

y-1 = 15336 [ee' (1 + y) QJ2 Q2h- 2_ (21) 
1 2.'i I (2I- 1) a• • 'c· 

We now proceed to evaluate the parameters in 
(20) and (21). These formulas were derived on the 
basis of a model in which the water molecule was 
regarded as a point charge; e' and a are the ef
fective charge of a dipolar water molecule and the 
effective distance between e' and the nucleus of 
the central ion. The effective negative charge of 
the oxygen atom by which a water molecule is 
joined to the positive ion at the center of the com
plex is 0.66 e, judging from the dipole moment of 
water. The influence of the positive charges borne 
by the two hydrogen atoms may be neglected be
cause the relaxation time is very strongly depend
ent on distance: T1 (/) a 8. It is clear from this re
lation that relaxation depends principally on the 
charge in the part of the oxygen atom electron shell 
which is closest to the central ion. The effective 
charge of the oxygen ion is displaced to the part 
of the electron shell closest to the central ion be
cause of electric polarization induced by this posi
tively charged central ion. Such polarization is of 
considerable magnitude because oxygen ions are 
highly polarizable (01. = 3.88 x 10-24 cm3 )_13 We 
therefore assume that the effective charge of the 
oxygen ion is not located on the oxygen nucleus but 
at a point where the field gradient falls off doubly 
compared with the gradient of the charges in the 
immediate vicinity of the central ion. Under this 
condition the distance a becomes 21/3 ru = 1.26 ru 
where ru is the crystalline radius of the central 
ion. 

The correlation time T c is taken to be 10-12 

sec; T = 300°K. The values of I and Q given 
below were taken from reference 14, those of y 
from reference 6 and those of ru from reference 
15. The following results were calculated: 

Al27 : I=%. Q = 0.156 barn, 1 + y = 3.59, ru = 
0.5 A. The complex Al(H20)~+, because of the 
large charge ~f its central ion, is highly stable 
with a high natural frequency. Assuming w0 = 
8 x 1013 sec-1, we have T1 = 1.22 x 10-4 sec, 
llv = 2.6 kcs. 

Ga69 : I=%. Q = 0.2318 barn, ru = 0.62A, 
1 + y = 9.75. Assuming w0 = 8 x 1013 sec- 1, we 

Salts in ! 
Experimen-

aqueous so- Ions tal line 
lution width, kcs 

NaCl 
I 

(N a2")+ ~j [ 18 j 

LiBr ~ 
NaBr 

I 
Br- 10 [19] 

Nal (I127)- 14 f17j 
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have T1 = 10-4 sec, ~v = 3 kcs. 
Ga71 : I=%, Q = 0.1461 barn, T1 = 2.6 x 10-4 

sec, ~v = 1.2 kcs. 
Na23 : I=%. Q = 0.1 barn, ru = 0.95A, 1 + y 

= 5.1. The ion Na + is known to form a very weak 
solvate. The stability of a solvate complex deter
mines its bond energies and its normal vibrational 
frequency. Assuming w0 = 4 x 1013 sec- 1, we have 
T1 = 0.01 sec, ~v = 30 kcs. 

Spin relaxation of negative ions will now be cal
culated using the same model that gave T 1 for 
positive ions. The following results are obtained 
for r and Br-: 

1127 : I=%, Q = 0.7 barn, ru = 2.16A, 1 + y = 
179.75. Assuming w0 =4x1o13 sec- 1, wehave 
Ti 1 = 2.6 x 103 sec-1, ~v r:::: 1 kcs. 

Br79 : I=%, Q = 0.335 barn, ru = 1.95A, 
1 + 1' = 100.0. Assuming w0 = 4 x 1013 sec- 1, we 
have Ti 1 = 1300 sec- 1, ~v r:::: 400 cps. 

5. QUADRUPOLE RELAXATION OF NUCLEAR 
SPIN INDUCED BY DIFFUSE ROTATION OF 
A MIXED COMPLEX 

We shall limit our consideration to a mixed 
complex of the form M (H20)s Y, where M is the 
central ion and Y is an ion that replaces one of 
the water molecules in the octahedron. With the 
z axis in the M-Y direction, Eq. (3) gives 
(V'E )±1 = (Y'E )±2 = 0 and 

(22) 

where eA and eB are the effective charges of a 
water molecule and of the ion Y respectively. If 
Y is a singly charged ion, eB = e and eA = 0.66 e. 
In our model the separations a and b are both 
equal to 1.26 ru. Taking the antishielding effect 
into account, we therefore obtain 

(23) 

The nonvanishing matrix elements are easily calcu
lated: 

:Jf~. m-1 = 3 (V'E)0 ( 1 + 1) eQ {I J x}m, m-1 sin2 B (t), 

:Jf~. m-2 

= - (V'E)0 (1 + I) eQ (I~ )m, m-2 sin 0 (t) cos 8 (t). (24) 

Transition probabilities are calculated by means 
of (11); for spin % we obtain 

w C/2, %) = w(- 1/2,- 3h) 

= (144 I 5) I eQ (1 +I) (V'E)o 121;_-2 "r• 

W (3/z, - 1/2) = W (1/2,- 3/z) 

= (1 I 5) I eQ (1 +I) ('VE)0 12 !-2 "r· (25) 

Here T r is the correlation time of diffuse rotation 
of the complex. From the theory of Brownian mo
tion we know that 

'tr = 4rr'Yjl 3 / 3kT, (26) 

where rJ is the viscosity of the liquid and l is 
the radius of the complex. By means of (19) and 
(25) we calculate the relaxation time: 

The radius of the complex Al (H20)5 y++ is taken to 
be 2.85 A; then Tr = 2.3 x 10-11 sec. With the 
above-mentioned values of the other parameters 
we obtain (T1 1 )r = 7.7 x 106 sec- 1• A similar cal
culation for the ion Na+ in the complex Na(H20)sY 

gives (T1 1 )r = 7.8 x 106 sec- 1• 

The spin relaxation time of the central ion will 
be even shorter if the complex contains two or 
more anions (located nonsymmetrically in the 
complex) because all components of the gradient 
tensor (Y'E )ik are then nonvanishing and of 
greater magnitude. 

6. CONCLUSION 

1. The spin -lattice relaxation time of nuclei 
with a large electric quadrupole moment is of the 
order 10-6 -10- 7 sec in mixed complexes, corre
sponding to ~ 106 kc for the line width. Lines 
with this width can obviously not be observed ex
perimentally. It follows that the observed mag
netic resonance line intensity for a nucleus with 
large quadrupole moment is proportional to the 
number of purely aqueous complexes. This sug
gests that measurements of magnetic resonance 
intensities provide a convenient method for inves
tigating complexing in liquid solutions of diamag
netic salts. 

2. For aqueous complexes of the ions Al3+ and 
Ga3+ good agreement is obtained between the cal
culated and measured resonance line widths. It is 
known from chemical investigations that hydrated 
complexes of Al3+ and Ga3+ are very stable. This 
confirms the correctness of our model if the life
time of the complexes exceeds the spin-lattice re
laxation time. 

3. For the ions Na+, Br-, and r the calcu
lated and observed resonance line widths do not 
agree. This evidently results from the weak 
stability of the complexes that these ions form 
with water. The experimentally observed line 
widths for the nuclei Na23 , Br79 , Br81 , and 1127 

are related to the lifetime of the complex rather 
than to the spin-lattice relaxation time. 
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