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The ultraviolet asymptotic value for the interaction of K mesons with baryons is studied 
for different kinds of relative baryon parity under the assumption of weak coupling. 

1. INTRODUCTION 

THE investigation of ultraviolet asymptotic values 
in quantum field theory can be carried out either 
by solving the Dyson integral equations for boson 
and fermion Green's functions together with a spe­
cific equation for the source particle, 1•2 or by the 
method of the renormalization group. 3•4 The weak 
coupling hypothesis is used in both cases. More­
over, these investigations are limited to the exam­
ination of one fermion field with a specific boson 
field (quantum electrodynamics or meson theory). 
It seems to us more logical to consider all pos­
sible ( renormalizable) interactions in the study 
of the ultraviolet asymptotic value. 

As an example we look at the ultraviolet asym­
ptotic value for the interaction of K mesons with 
baryons (customarily called the theory of medium 
strong interactions ) . For this we take into consid­
eration the interaction constants for K mesons 
with all baryons. The use of the weak-coupling 
hypothesis in meson theory is not well founded. 
But there is sufficiently strong proof that the K­
baryon interaction constants are significantly less 
than the 1r -meson constant (gk/4n « g~/4n).5 • 6 
It can be shown that there exists a reasonable, 
physical momentum interval in which the weak 
coupling assumption is legitimate. Special atten­
tion is given to the ultraviolet asymptotic value 
for different kinds of relative baryon parity. 

2. THE RENORMALIZATION GROUP IN THE 
THEORY OF MEDIUM STRONG INTERAC­
TIONS 

Assuming charge independence for the interac­
tion of K mesons with baryons, we write the La­
grangian of the system in the form 
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L = Lcoup -T- Lint. 

where 

Nl ~-C (~), 

r~ = 1, Is (i = 1, ... , 4), 

The choice of 1 or y 5 depends on the relative 
parity of the baryons. We represent the fermion 
Green's function in the form 

The index B on S and m means the baryons 
(N1, N2, A,~). We write the K-meson Green's 
function and the source particles as 

(2b) 

r;=r7G;, G;=G;(p2,q2,(p-q)2 ), i=l, .•. ,4; 
0 = 0 (p'2, q'2, p2, q2, (p' -q)2, (p + q)2). (2c) 

The source 0 corresponds to the diagrams with 
four incoming K -meson lines. 

For brevity, we do not write out the renormali­
zation group. There is the following system of in­
variant charges: 

:;1 = SN,SASKGigi, :;2 = SN,S1:SKG~g~, 

cr3 = SN,SASKG;g~, 

p = S}Oh· (3) 

The Lie equations for the invariant charges (3) are 
given in Appendix 1. We have written down these 
equations for the ultraviolet asymptotic case. 
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Let us look at a simpler problem. We notice 
that the system (A1) is invariant under the change 
O"t - o-3, 0"3- o-1, o-2- o-4, o-4- o-2. This circum­
stance allows us to transform this system into a 
simpler one. Let g1 = g3, g3 = g4 in the Lagrang­
ian (1). Polkinghorne employed such a Lagrangian.7 

Neglecting the mass differences between the bary­
ons, which is fully justified in the ultraviolet asym­
ptotic case, we get 

and the system (A1) leads to a system of three 
equations 

2 

da; I dx =a;~ ~i(s) ai + x1a;p2 

/-1 

+ 2f1 [a1 + 3a2 ] p + f 2p2 , 

where 

(i = I, 2); 

. 1 • 5 3 + 12 (1- E) ) 
~~(s) = 32n2 (1 + 4(1-£) 7 ' 

x = ln (p2/A.2 ), A. the normalization momentum. 

(4) 

(5) 

The scalar functions S, Gi, and D are deter­
mined by the equation 

§;InS (x, g~, g:, h) = :~so (e, al, a2, p) i;=l; (6) 

8° is obtained with the aid of perturbation theory. 
The parameter E takes on the two values ± 1. 
The choice of + or - depends on the type of rela­
tive parity of the baryons. We denote by lAB the 
parity of baryon A relative to baryon B, then 

s =_:_I, if /AN,= h::.N, =IAN,= Ir.N, =±I, 

or I AN, = I EN, = - I AN, = - I EN, = ± I , 
or - I AN, = I EN, = -- I AN, = I EN, = ± I ; 

E = -1, if -hN, = IEN1 = hN, =-fEN,=± J. (7) 

3. INVESTIGATION OF THE ULTRAVIOLET 
ASYMPTOTIC VALUE 

We shall not take into account K-K meson 
scattering processes. Then in the version given 
by (4), the Lie equations have the form 

(8) 

We examine two cases. 
A. E = -1. From Eq. (8) we get a formula de­

termining the dependence of o-1 on o-2. In the 
( o-1, o-2) plane we have the family of integral 
curves shown in Fig. 1. The straight line o-1 = 

FIG. 1 

5 o-2 is stationary, so that it is sufficient to solve 
Eq. (8) for this value. We get 

(9) 

With the help of (9) we find the form of the scalar 
functions S and Gi: 

S = [1- ~g2x]-"/1~ 
1 8n2 2 • 

(10) 

The constants ai are 

S;=SN,=SN, SASE SK G1 =G3 G2 =G4 

a;= 2 5 1 16 -5 -3 

B. E = + 1. The integral curves in the ( o-1, o-2 ) 
plane for this case are shown in Fig. 2. The par­
ticular solution for the straight line o-1 = o-2 is not 

FIG. 2 

stationary. The integral curves go either to the 
asymptotic o-1 = ~ or to o-1 = a~/7. We solve (8) 
for these asymptotes. 

a) The asymptote o-1 = ~ 

(11) 

b) The asymptote o-1 = ~/ 

2 [I 7 2 ]-'t, 
0 1 = gl - 321t• g2x ' 

(12) 

The scalar functions S and Gi, found with the 
aid of (11) and (12), are respectively 
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S; I a; I ~i I < I ~ ~ II 
SN, = SN, 1/5 3/4 3/7 1;4 

SA 4/5 0 0 1 
sk 0 1 4/7 0 

[ 7 J-C[· S; = I - 32n2 g~x ' 

(13) 

The values O!i> f3i, ai, and f3i are given in the 
table. 

We shall find which curve is followed by a given 
point in the three-dimensional space (p, a1, a2 ) 

when x goes to infinity. To do this we determine 
the integral curves of the system of equations got 
by dividing the third equation in (5) by the first and 
the second: 

dp 3F0 [a~+ aia2 (2 +e)+ 9a~] + 2F I [a I+ 3a2 ] p + F2p2 

da1 ~~a~+ ~~(e) aia2 + xiaip2 

dp 3F0 fa~+ aia2 (2 +e)+ 9a~] + 2FI [ai + 3a2] p + F2p2 

daz ~~(e) aia2 + ~ia~ + xia2p2 • (14) 

The three dimensional space p, a1, a2 (at, 
a2 ~ 0) is divided into three regions by the sur­
faces p1, p2, the roots of the trinomials quad­
ratic in p in the numerators in the right hand 
terms in (14); Pt > P2: 

I) p ;>PI (cri, cr2 , s), 

II) p2 (cri, cr2 , s) < p <PI (cri, cr2 , s), 
III) p < p2 (cri, cr2 , s). (15) 

The derivatives dp/ da1, dp/ da2 are positive in 
region II and negative in regions I and III. Near 
the origin of the coordinates we neglect the a1p2 

and a2p2 terms and write the solution of (14) in 
the form [see (A2)] 

(16) 

For the ratio A. = A.1 /A.2 we get three values 
A.=O, A.=oo, and O<A.(E)<oo. Thefirsttwo 
give a family of integral curves corresponding to 
the planes (a2, p ): a1 = 0 and (a1, p ): a2 = 0. 
A detailed analysis shows that in these planes the 
family is qualitatively the same as in reference 8 
(see Fig. 3). In the case 0 < A. (E) < oo [see (A4)) 
we have a family of integral curves in the plane 
which includes the p axis and which forms with 
the ( a2, p) plane an angle e such that 

S; 

SK 8;5 6 24/7 2 
G1 = Ga -4/5 -3 -12!7 -1 
Gz =a. -4/5 -3 -1217 -1 

FIG. 3 

tan 8 =).. (s). (17) 

It appears that the integral curves in this plane 
are qualitatively the same as those in the ( a1, p) 
for ( a2, p) planes but the straight lines (A2) or 
(A3) should be respectively replaced by those 
given in (A4). 

Points lying in the neighborhood of the origin 
on these three planes can only move along the in­
tegral curves as x goes to infinity and cannot 
leave these planes. Points somewhat away from 
the ( a1, p) and ( a2, p) planes will move along 
curves removed from these planes as x goes to 
infinity. This means that the ( a 1, p) and ( a2, p) 
planes are not stationary. To clear up the station­
ary quality of the plane corresponding to 0 < A. ( E ) 

< oo, we look at the two cases E = + 1 and E = - 1. 
In the neighborhood of the origin the quantity 
da 1 I da2 does not depend on p and is equal to 

Equation (18) determines the lines of intersection 
of the integral curves of the system (14) with the 
plane p = const. In the E = - 1 case they are 
shown in Fig. 1. We see that the plane forming 
the angle given by tan e =A. ( -1) = 5 with the 
( a2, p) plane is stationary. For the E = + 1 case 
the analogous curves are shown in Fig. 2, from 
which it follows that the plane given by tan e = 
A. ( + 1) = 1 is not stationary. 

To get a fuller family of integral curves we 
solve (14) and (5) for the case I pI » CTt, a2• The 
solution is 
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p =hI (I - hF 2x), 

(19) 

A. Case e: = - 1. There exists a surface p = 
cp (a1, a2, -1 ), in which the lines (A2) with kf < 0, 
(A3) with k~ < 0, and (A4) with A.~ ( -1) < 0 lie. 
This surface lies under the surface 

There are two regions of the space (p, a 1, a 2 ): 

(20) 

Each point (p, a 1, a2 ) in region I moves onto 
the line (A4) with A.l ( -1) > 0, as x goes to oo. 

Every point in region II, as x goes to oo, moves 
along curves whose asymptotic form is given by 
formula (19) with p < 0. Since in this case the 
solution (A4) with A.~ ( -1) > 0 is stationary, it 
is sufficient to solve Eq. (5) for this line. We get 
the formulas determining the invariant coupling 
constants (A4) with A.~ ( -1) > 0 and Eq. (9). The 
functions S and G found with the aid of these 
formulas have the form (10). We add here the 
formula for the source 

tXo > 0. (21) 

We note that the sources Gi depend on three 
arguments and that it is therefore possible to have 
various kinds of ultraviolet asymptotic values; but 
here the situation is the same as in meson theory: 
they all coincide. The source 0 depends on six 
arguments [see (2c)]. It seems that in this case 
the ultraviolet asymptotes do not all coincide and 
that ao depends on the kind of ultraviolet asym­
ptote (for details, see the work of Ginzburg and 
Shirkov9 ). 

B. Case e: = + 1~ There exists a surface p = 
cp ( a1, a2, + 1) in which lie the lines (A2) with 
k~ < 0, (A3) with k~ < 0, and (A4) with A.~ ( + 1) 
< 0. This surface lies under the surface 

There are three regions of the space: 

I) p)>rp(a1,a2,+·1), 
II) p)>rp(a1,a2,+1), 

III) p~rp(a1 ,a 2 ,+1), 

a1 )>a2 )>0; 

O<cr1 <cr2 ; 

a1 , a2 > 0. (22) 

As x goes to infinity, points in region I, moving 
along the integral curves, go onto the curves (AS), 

points in region II go onto curves (A6), and points 
in region III onto curves (19). In this case there 
is no stationary solution in the form of a straight 
line and therefore the source terms and Green's 
functions behave according to a law different from 
the one in electrodynamics or in meson theory. 

4. CONCLUSION 

1. The investigated integral curves in the 
(p, a 1, a 2 ) space are not closed. This means that 
there exists for them, just as in electrodynamics 
and meson theory, a way of going beyond the lim­
its of the weak coupling for increasing momenta. 
In our view the existence of closed integral curves 
in the theory considered is scarcely probable: we 
should be left inside the limits of the weak coupling 
theory. However, it is still useful to investigate 
in detail Eqs. (A1) or (5). 

2. The behavior of Green's function and of the 
source terms essentially depends on the relative 
parity of the baryons. For some kinds of relative 
baryon parity (7) with e: = - 1 there exists a sta­
tionary solution in the form of a straight line in the 
space (p, a 1, a2 ), and then the Green's function 
and the source terms behave according to the 
standard law (10), (21).1 - 4 For other sources (7) 

with e: = + 1 there is no stationary solution in the 
form of a line in the ( p, a 1, a 2 ) space. The con­
nection between the invariant charges is shown by 
formulas, either (A5) or (A6). Here the Green's 
functions and the source terms behave entirely 
differently [ see (13) ] 0 

3. The extent to which the assumption which we 
made of weak coupling is valid (p, a1, a2 « 1) will 
be clear if one succeeds in determining exactly the 
magnitude of the constant gi in (1). From the es­
timates got in references 5 and 6, it evidently fol­
lows that g~ I 47r "' 1. For such a value of the con­
stant the poles of the invariant charges (9) and (11) 
are distributed in the neighborhood, respectively, 
of I p I "' E "' 2.5 Bev and I p I "' E "' 9 Bev. 

4. In the investigation of the ultraviolet asym­
ptotes, we should have taken into account the in­
teraction of 1r mesons with baryons, which could 
change our results in ai:J essential way. For the 
present we lay this question aside. 

The author expresses his deep thanks to D. V. 
Shirkov for numerous remarks and for constant 
interest in the work. 

APPENDIX 

1. The Lie equations for the ultraviolet asym­
ptotic case. 
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(i =I, ... ,4), 

(A1) 

3 3 2 12 

s 1 5 4 2 
xi = 321t 2 2 12 3 3 

I 4 2 1 5 

2. We look for the solution of (14) in the neigh­
borhood of the origin in the form (16). For A. = 
A.t /A.2 we get 

a) ).. = oo, 

1 2F1 -~i [ (2F 1 -~i)• -~]'/•. 
k1. 2 = - 6F0 + (6F0 ) 2 3F0 ' (A2) 

b) ).. = 0, cr2 = ki.2P• 

2 6F1 - ~~ [ (6Ft- ~~)2 _ __E_ ]';,. 
k1, 2 =- 54F0 + (54F0 ) 2 27F0 ' (A3) 

c) o1 = )..(e:), 

A(-1)=5, 

)..1,2 ( I)_ ( 4F,- 1/S7t2) + [( 4F 1 - ijS1t2 )2 _ ~]'/, 
2 + - 3F0 ·13 3Fo·13 3F0 ·13 ' 

, 1.2 (- 1) = _ [SF 1 - 13j167t2] 
" 2 3F0 ·39 

+ [( SF1 -13j167t2 )2 _ ~]';,. 
- 3F0 ·39 3Fo·39 (A4)· 

3. The asymptotic solutions of systems (5) and 
(13). For the case I pI ~ a1 » a2 

(A5) 

where 

a1 =2F1 ;~i-l, 1X2 =F2/~i. 
For the case I p I ~ a2 » O't 

cr 1 = cr'/.', cr 2 = g~ [I- 3;1t2 g~x r1, 

' . 
' A';:cx2 ' -A'/cx2 

[p/cr2-a!) [p/cr2 -a2] =c'cr2 , (A6) 

where A', c', a1, 2 have the same structure as in 
the preceding case, but one must make the substi­
tutions 

IXo ~a~ = 27 F o I N, c.:1 ---+a~ = 6F 1 I ~~ - I , 

a2---+ a; = F 2 I~~. g,---+ gz 
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