
SOVIET PHYSICS JETP VOLUME 37 (10), NUMBER 1 JANUARY, 1960 

ULTRASONIC ABSORPTION IN METALS IN A MAGNETIC FIELD. I. 

V. L. GUREVICH 

Institute of Semiconductors, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor December 16, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 71-82 (July, 1959) 

Ultrasonic absorption in metals at low temperatures and in a strong magnetic field ( Larmor 
frequency of conduction electrons much higher than the collision frequency) is studied theo
r~tically. A case is considered of an arbitrary law of energy dispersion of the electrons and 
of an arbitrary orientation of the field H relative to the axes of the crystal and the direction 
of sound propagation. It is found that the sound absorption coefficient r can experience two 
types of periodic variation with respect to 1/H: oscillations and increments (changes of a 
given sign which commence periodically). An expression is obtained for the periodic part 
of r for an arbitrary form of the collision operator. It is established that the experimental 
investigation of the increments permits the determination of the Gaussian curvature of the 
Fermi surface at all its elliptic points; a study of the oscillations permits the complete re
construction of the Fermi surface if it possesses a center of symmetry. 

AN interesting effect has been established in the monotonic character. Here many different possi-
experiments of Bommel1 and of Morse, Bohm, and bilities are encountered, and this question de-
Gavenda2 - the oscillation of the ultrasonic absorp- serves special consideration. 
tion coefficient r in a metal upon variation in the 1. The coefficient r can undergo periodic 
magnitude of the magnetic field H. It was noted in changes of two types: oscillations and periodic 
Pippard's work3 that the period of the oscillation increments. The latter can exist only in the case 
is determined by the relation between the dimen- in which the time average value of the velocity 
sions of the orbit of the electrons in the magnetic of the electron v in the direction of the sound 
field and the sound wavelength. Starting from this wave is, generally speaking, different from zero. 
representation, the authors of reference 2 esti- The distribution function of the electrons moving 
mated the mean limiting Fermi momentum for the in the field of the sound wave, F = F0 + f, where 
substance studied (copper). F 0 is the equilibrium distribution, f is a non-

The theory of ultrasonic absorption in metals equilibrium addition of the form f0 cos ( wt - k · r ) . 
in the absence of a magnetic field was set up in We shall see below that the absorption coefficient 
the researches of Akhiezer,4 and Akhiezer, Kaga- is determined by the quantity f~. Obviously, f5 is 
nov, and Lyubarskil. 5 The aim of the present re- a maximum for those electrons which, after the 
search was to discover what information can be time T = 21r/£2 of a revolution in the magnetic 
obtained, relative to the shape of the Fermi sur- field, fall in the planes of equal phase of the sound 
face in a metal, by studying the periodic part of wave. In this case, the frequency of variation of 
the function r (H) for different orientations of the sound-wave field, which acts on the electron 
the field H relative to the sound propagation in its motion,* is shown to be equal to the fre-
vector k, and also to give order-of-magnitude quency £2 of rotation of the electron in the mag-
estimates of the absorption coefficient r .* netic field H. For such electrons, the condition 

It is also of interest to determine the asym
ptotic behavior of the coefficient r in strong 
magnetic fields, when the dimensions of the orbit 
of the electrons are much smaller than the sound 
wavelength, and the dependence of r (H) has a 

*The ultrasonic absorption in a metal for certain cases of 
mutual orientation of the vectors k and H and for an isotropic 
quadratic energy dispersion law for the electrons has been 
studied by Steinberg. • 
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(1.1) 

must be satisfied ( n is an integer or zero). The 
frequency £2 = eH/m*c, (where e is the electron 
charge and m* the effective mass of the electron 

*Consideration of the motion of the electron in the static 
field of the sound wave, which lies at the basis of these 
qualitative considerations, is valid inasmuch as the velocity 
of sound w « v. 
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in the given trajectory) was introduced by I. M. 
Lifshitz, Azbel' and Kaganov. 7 The quantities v 
and m* are functions of the quantities that are 
conserved in the presence of a magnetic field, 
namely the energy Eo and the projection of the 
quasi-momentum p in the direction of the field 
(the z axis). 

In the absorption of sound, those electrons play 
a role for which the energy Eo is close to the 
value of the chemical potential JJ.o· However, the 
dependence on Pz is very important. Because 
of it, for a given H, the condition (1.1) can be 
satisfied only for certain values of pz. These 
values include, first, the solutions of the equation 
k • v = 0 (if the Fermi surface is closed, this 
equation obviously always possesses at least one 
solution ) . Equation (1.1) is satisfied for n = 0 
by these Pz for any value of the field, and if 
the field H (and also the frequency Q) is suf
ficiently large, then (1.1) can have no other solu
tions. 

If we decrease the field, then (1.1) ought to have 
a solution also at n = ± 1 for H less than a cer
tain H1• A new group of electrons appears, whose 
distribution function differs markedly from the 
equilibrium distribution. Therefore, as the field 
H goes through the value H1, the absorption co
efficient r ought to increase. Further changes 
of this type in the coefficient r should occur when 
the field assumes the values Hn = H1 I I n 1. Evi
dently, these considerations on the presence of 
periodic changes in the coefficient r apply' gen
erally speaking, only to the case of a closed tra
jectory in the quasi-momentum space, 7 when the 
motion of the electron in the magnetic field is 
periodic. In the present paper we consider only 
this case. 

The changes mentioned earlier can be of two 
types, depending on for which pz (1.1) is first 
satisfied. The first type is connected with I Pz I 
equal to p~, the extremal values of I Pz I on the 
Fermi surface. We shall see below that the cor
responding changes are sufficiently smooth -
sharp jumps take place in the derivatives of the 
coefficient r with respect to the magnetic field. 
By measuring the field H1, it is possible to find 
the product v~m* = K-112, i.e., to determine the 
Gaussian curvature K of the Fermi surface at 
its elliptic point, to which the normal is directed 
along Pz· If the Fermi surface is nonconvex, then 
there can be several such points, to each of which, 
generally speaking, there corresponds a value of 
H1• If the Fermi surface is open in the direction 
of H, then the increments of the first type ought 
to be absent. 

Increments of the second type, as we shall see 

below, represent sharp jumps. They are associ
ated with such values of pz for which the function 
a (pz) has extrema, i.e., da/dpz = 0. If the 
Fermi surface is an ellipsoid, then it is easy to 
see that this derivative does not vanish (it is equal 
to a constant). Therefore, the presence of jumps 
testifies to a sharp departure in the shape of the 
Fermi surface from ellipsoidal. 

Clearly, these increments exist if the electron 
does not experience collisions within the period of 
rotation in the magnetic field. More precisely, 
for this result it is necessary that the inequality 

(1.2) 

be satisfied, where 1/t0 is the collision frequency 
of the conduction electrons. We shall assume be
low that (1.2) holds. The frequency of the ultra
sound can also be such that wt0 < 1, and in our 
research just this limiting case was considered. 

2. The oscillations of the coefficient r take 
place, generally speaking, for any relative orien
tation of the vectors k and H. But it is easiest 
to observe them when these vectors are perpen
dicular, since the periodic increments are then 
absent. In fact, in this case a = 0, inasmuch as 
Vx = Vy = 0 (the trajectories in the quasimomen
tum space are closed); we therefore consider the 
case in which k 1 H. 

The trajectory of the electron at different 
points intersects the plane k • r = const at differ
ent angles. In particular, there are at least two 
points on it, and possibly more, in which the tan
gent to it lies in the plane k · r = const. In it, the 
velocity component of the electron in the direction 
of the change of the field of the sound wave is equal 
to zero, and the electron spends more time close 
to the plane of equal phase, where such points lie, 
than to the other planes. Therefore, the quantity 
f~ is determined fundamentally by the value of the 
field at these points, since the effect of the rapidly 
changing field on f~ outside their immediate vicin
ity is shown to be very small. The latter confirma
tion is valid to a greater degree the larger the num
ber of waves contained between these points be
comes, since the effect on f~ of the rapidly oscil
lating field between them becomes smaller. 

Let us consider two such points - 1 and 2. The 
quantity f~ reaches a relative extremum for a 
definite difference in the phase of the field of the 
sound wave at the given points. For a change in 
the constant magnetic field H, this difference 
returns to the previous value, when the number 
of sound waves between the points 

t, 

a= (2rtt1 ~ kvdt = A;2rc (2.1) 
I, 
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changes by an integer (t2 - t1 is the time of motion 
of the electron from point 1 to point 2 ) . In this 
case fij again passes through an extremum each 
time. 

Let us compute the integral (2.1). Let the vec
tor k be directed along the ~ axis. The equa
tions of motion of the electron in the magnetic 
field have the form 

dpc,!dt = - (eH ;c) v~, dp~!dt = (eH/c) v~. (2.2) 

Then 

A= (ck;eH) (p<~>- p<~>), (2.3) 

where p~> and p~2 > are the values of the projec
tions of the quasimomentum on the 17 axis at points 
1 and 2. Consequently, if A » 1, fij oscillates as 
a function of 1/H with period .6. (H-1 ) = 21re/ck x 
I p~2 > -pH> I. The period depends on pz; therefore 
in the total experimentally-observed effect there 
will exist only oscillations corresponding to the 
distinct values of Pz, namely values for which 
.6-H-1 (Pz) has an extremum. If the plane Pz = 0 
intersects the Fermi surface or surfaces, these 
values will necessarily include value Pz = 0. This 
follows from the fact that the Fermi surfaces either 
possess radial symmetry or occur in pairs that 
possess radial symmetry with respect to each 
other. 

3. In the simplest case, when the Fermi sur
face has a center of symmetry, it is possible to 
point to an extraordinarily simple method which 
permits us to establish the surface from the period 
of oscillation of the coefficient r. This method 
can be shown to be suitable for experimenters, 
since it is connected in principle with the use of 
only a single specimen, the surface of which does 
not need careful treatment for the given purposes. 

The method for establishing the Fermi surface 
lies in the following. Leaving the orientation of 
the field H unchanged relative to the crystallo
graphic axes, we measure the periods of oscilla
tion of r (H) for various directions of the vector 
k in the plane perpendicular to H. We assume 
initially that the oscillations are connected only 
with pz = 0. Then, if the vector k is directed 
along the ~ axis we can determine the ordinates 
p#> of the points at which the line l (H) of inter
section of the surface Eo (p) = IJ-o with the plane 
pz = const is parallel to the ~ axis. We draw 
the straight lines Pry = p~i> in the given plane, 
lines on which these points lie. Repeating such 
a procedure for different directions of the vector 
k 1 H, we obtain a family of lines in the plane 
Pz = 0. Evidently, the envelope of this family is 
indeed the line l ( H ) . Changing the direction of 

H, we can determine the form of all possible 
central sections of the Fermi surface and thus 
establish it completely. We note that by deter
mining the curve l (H) for a given direction of 
H, we can simultaneously establish a control on 
the validity of the determination of the line l (H) 
for other orientations of the field. The possibility 
of such a control permits us to ascertain what 
oscillations correspond to Pz = 0, what (if there 
are any) correspond to other values of pz, and 
also to determine whether the Fermi surface has 
a center of symmetry. The determination of the 
Gaussian curvature of this surface from the in
crements of the first type can serve as an addi
tional means of control. 

We note that if we succeed by experiment in 
obtaining a sufficiently strong inequality A » 1, 
then the use of films in place of bulk specimens 
can facilitate considerably the interpretation of 
the experimental data. 

4. We now turn to the quantitative solution of 
the problem. Following Akhiezer, 4 we shall con
sider that in the field of a sound wave with Ui = 
Uio exp [ i ( wt- k • r )] (ui are the components of 
the displacement vector) the energy of the elec
tron Eo (p) is increased by an amount 

(4.1) 

proportional to the strain tensor Uik· The'' distri
bution function of the conduction electrons F = 

F 0 [ ( E -11- )/T] + f represents the sum of the equi
librium Fermi function (IJ- =chemical potential at 
the given point of the metal) and the nonequilibri
um addition f = - xBF0 /BE. It can be shown that 
11- = IJ-o + 11-', where 11-o is the chemical potential 
in the undeformed metal, 

is a contribution which is determined both by the 
change in the energy of the electrons (the first 
component) and also by the change in their equilib
rium density (second part) under the action of the 
deformation. Here N0 is the density of electrons 
in the undeformed metal, the bar indicates aver
aging over the Fermi surface ( d2:: is an element 
of this surface, and v is the velocity of the elec
trons on it): 

Cf =, ~ 9 (dE 'v)' ~ (dE;v). 

As shown in references 4 and 5, the temperature 
change in the field of the sound wave can be neg
lected in the kinetic equations. 

The kinetic equation for the electrons in a mag-
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netic field in the form assumed by I. M. Lifshitz, 
Azbel', and Kaganov7 which is applicable to the 
present case, has the form 

i(vz -'-- Qclxicl-::- ivkz -i lt1 z = Au-e/£vvv=.=Q. (4.3) 

Here T = Qt is a dimensionless variable propor
tional to the time of motion of the electron in the 
magnetic field: 

m* = (2n:f1 as;as, 
where S is the area of the intersection of the sur
face Eo (p) = const with the plane Pz = const, and 
W is the collision operator. x should be a periodic 
function of T with period 27T. The right side of 
(4.3) is computed in reference 5: 

Aik ,= ),ik- ),ik- [ N0h~/2 ~ (di>v)J oik; 

the tensor notation in the expression AikUik is 
omitted here and below. Further, 

E' = E + 'Vp.'/e, (4.4) 

the field E is determined from the Maxwell equa
tions 

curl E =- (iw;c) H', curl H' = (4n:;c) j, (4.5) 

divE = - (8n:ejh3) z ~ (dEjv), (4.6) 

whereas the field G = ti x H/ c arises because of 
the motion of the conductor in the magnetic field. 

For good conductors, as noted in reference 5, 
(4.6) reduces to the equation 

X =0, (4. 7) 

1' 't' '!' -r-2Tt 't'' 

i.e., to the condition of the vanishing of the volume 
density of charge. Two other equations for the 
components of E are obtained by substituting the 
expression for the components of the current den
sity into (4.5): 

j~ =- (2e;h3 ) ~ V:J. (d~;v), 

where {3 denotes 1J or t. 
The coefficient of sound absorption is 

r = crj2wEsoo (4.8) 

where u = TS, S is the rate of change of the en
tropy density, which is determined by the electronic 
collisions, Eso is the energy density of the sound 
wave, and w is the sound velocity. 

Making use of the expression for the entropy 
density of a Fermi gas 

S =- 2h- 3 ~ [FIn F + (1- F) In (1- F)] d3p, 

it is not difficult to show that 

(4.9) 

In a number of interesting cases it is found pos
sible to introduce the relaxation time, i.e., to as
sume that the collision operator is 

W = 1/fo (p). (4.10) 

Postponing the investigation of this question to 
Sec. 7, we now find a periodic solution (in T) of 
(4.3) with account of (4.10). It is advantageous to 
write it down with the help of an operator R which 
acts on periodic functions of T (with period 27T) 
in the following fashion: 

k~= n-l ~ exp r~ <- i'X + r> d-r"] ~ (-r') d-r' = Q-l ~ exp [~ <-- i'X + rl d-r"]~ (t') d-r'ftexp [2n: <- i;, + rll- r 1 
-oo " "':' T 

=r~f[exp r2n: (- i~ +rll-1L 

where a= k·v/Q, y = 1/nt0; the sign "' over a 
letter indicates averaging over the period 27T. The 
solution of Eq. (4.3) is 

X (-r) = RQ. (4.12) 

We assume that wt0 « 1. We further recall that, 
in accord with (1.2), 27Ty « 1. 

We now determine the components of the vector 
E8 11 • It follows from (4. 7) that 

where 

/£~ = E8o~ + ] ar-1£~, 
{l 

ail=- Rv~jRv~. 

(4.13) 

(4.14) 

Substituting the expression for jf3 into (4.5), we 

arrive at the following equations: 

£0 =Eo~+] b(lvl£v, 

where 

Eor' = (8n:iew2jwc2h3) ~ vilRAudEjv, 

b(lv =- (8n:ie2w2jwc2h3) ~ V(lRvvd'E.jv. 

Their solution is 

/E0 =] (1-d)r;J-(I£ow + Gw). 
(l' 

where 

(4.11) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

We are interested in the case of large relaxa-
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tion times (t0 ~ 10-11 sec) and ultrasonic frequen
cies of the order of 108 - 109 sec - 1. Under these 
conditions, it is usually true that I df3{3' I » 1. For 
example, for the case in which H 1 k and I a I » 1, 
it is possible to obtain the estimate 

(4.19) 

the validity of which will be demonstrated in what 
follows. Here u0 is the conductivity of the metal 
in the absence of a magnetic field. Assuming u0 
~ 1020 sec-1, w"' 109 sec-1, a'"" 10, we obtain 
I df3f3' I "' 10. Such estimates are easily obtained 
in other cases. If the inequality I df3(3'1 » 1 holds, 
then 

(€~ =- ~ d00I, (<€ow + G~-). 
~· 

(4.20) 

This case is of fundamental interest to us. How
ever, for very high ultrasonic frequencies, there is 
an opposite limiting case I df3f3' I « 1. Then 

(4.21) 

Evidently, the field G associated with the mo
tion of the conductor in the magnetic field" differs 
from zero only if the directions of the vectors 
u and H do not coincide, and its presence can 
affect the form of the coefficient r only if it is 
not directed along k. It is of interest to compare 
the order of magnitude of Au and ev ( 1 - d) - 1 G 
which enter into the right-hand side of the kinetic 

equation. For example, in the case in which the 
estimate ( 4.19) is valid, their ratio is of the order 
of 47ru0w2 /wc2 « 1, and the right-hand side of the 
kinetic equation can be represented with sufficient 
accuracy in the form 

Q =Au- eE'v. (4.22) 

Inasmuch as we are interested in the case of not 
too strong magnetic fields, in which the dimensions 
of the electronic orbit are greater than or of the 
order of the acoustic wavelength, we shall assume 
in what follows that the right side of the kinetic 
equation has the form (4.22). We emphasize, how
ever, that the field G can be shown to be impor
tant in the determination of the absorption coeffi
cient in the case of a sufficiently strong magnetic 
field when A « 1. 

On the other hand, components containing Ef3 
on the right side of the kinetic equation are small 
in comparison with the term Au, roughly speak
ing, when I d{3{3'1 « 1. In the most interesting 
case, I df3f3' I « 1, the terms are gen.erally com
parable, and it is necessary to take them all into 
account in the determination of the absorption co
efficient. 

5. We begin with the determination of the coef
ficient r when the vectors k and H are mutu
ally perpendicular. If I a I » 1 for most values 
of T' then the integral r Au can easily be com
puted by the method of stationary phase, and is 
equal to 

; Au= n-leiA(T) [AI V2rrja~ e-i(A,+!t/4) 

+ A 2 V2rr/j a~ 1 e-i(A,-~t/4)] u, 
A (c)= (clcjeH) [p~ (c)- p~ (0)] = ~ ad-c'. 

(5.1) 

(5.2) 

The prime here denotes differentiation with re
spect to T; the indices 1 and 2 indicate that the 
values of the function are taken at points of sta
tionary phase, where k·v (T) = 0. In this case, 
it is assumed that a 1 > 0, a 2 < 0. For.simplicity, 
we have assumed that such points are two in num
ber; however, the contribution can easily be gener
alized to a case in which there are more than two. 

In the calculation of the integral (5.1), we have 
taken into account only the first component on the 
right side of (4.4), because, if I df3(3'1 » 1, y « 1, 
then the contribution from it is larger than from 
the second component. This is readily verified by 
computing the quantities entering into (4.20) and 
making use of the integration formula (5.1). In 
this fashion it is easy to obtain also the estimate 
(4.19). 

The integrand in (4.9) is 

t;;-1 j z 12 = (2rrt1 to [I Alui 2/a~ -1 I A2u /2/l a~! 
-2 (Alu*) (A2u) sin A! VI a~ a~ iL (5.3) 

where A = A2 - A1. It is clear that u represents 
the sum of the part of u0 which depends smoothly 
on H and the oscillating component D..u. 

Substituting (5.3) into (4.9) and taking into ac
count the identity di:/v = m *dT dpz, it is possible 
to represent the expression for u0 in the following 
form: 

cr0 = h-3 ~ Qt0o(kv)(Aul 2 dE;v~N0t.L0Dt0w3 u~; vw. (5.4) 

For the calculation of D..u it is again necessary to 
make use of the method of steepest descents: 

A 2ell \' t ( '\ '*)(A ') . A I , , 1-'t d ucr =- ckh3 .l o " 1U 2U sm v~ 1V;2 ,, Pz 

- ' . [.!!:___ ( 0 - 0 ) + ~l - cr SID ef! P~2 Pm - 4 ' (5.5) 

where 
(5.6) 

The superscript 0 denotes that the corresponding 
quantities are taken at the saddle point where the 
first derivative vanishes: 
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(5. 7) 

and the sign of the phase in (5.5) coincides with the 
sign of the second derivative at this point.* If there 
are other values of Pz near Pz = 0 for which (5.7) 
holds, !::.a is the sum of the several components of 
type (5.5). 

Let us estimate the absorption coefficient r. 
Substituting (5.4) in (4.9) and taking it into account 
that Eso = pw2uV2 (p = density of the crystal) 
and Aik "' f.to• we find that the nonoscillating part 
is 

(5.8) 

It is proportional to the magnetic field and the ul
trasonic frequency. If we investigate the depend
ence of r 0 on the frequency at a given maximum 
or minimum, i.e., for a fixed value of a= wv/rlw, 
then we find that the coefficient r 0 is proportional 
to the square of the frequency. According to (5.6),t 
t::.r "' ro--1 rlw/wv . 

6. We now turn to the investigation of the in
crement of the coefficient r. To estimate the rel
ative value of the effect, we determine the absorp
tion coefficient in such a field H that for most 
electrons, the quantity I a I is close to unity but 
is always less than it. 

We again consider a case in which (4.22) is 
valid with sufficient accuracy. It is easy to verify 
that the important region in the integral (4.9) is 
that close to pz = 0 and to the other pz (if they 
exist) which cause a to vanish. For simplicity, 
we assume that the value Pz = 0 is alone in this 
relation. We expand a near it up to the linear 
term a= a'pz, and integrate over infinite limits, 
obtaining 

_ 1 \' m• I rQI 2dPz m•l ';?Ji2 

cr- 'l:rch•j Q 2loa' 2p!+y2 =2h3k(8v(apz) (S. 1) 

(the values of all the quantities are taken at pz = 0 ). 
Then 

r 0 ~ N o[loW I pvw2 • (6.2) 

This estimate remains valid even when a (pz) = 0 
has several solutions. 

If 271)' « 1, then the derivative dr /dH must 
undergo a sharp jump near H = H1• Under such 

*If the line l (H) is not convex, cases for which a.( 't i) 
= a.' ('ti) = 0 are possible for certain directions of the vector 

kl H. The expression for the periods of the corresponding 
oscillations remains in these cases as before, but the phase 
and the dependence of the amplitude on the field change 
slightly. 

tWe note that a much weaker inequality than (1.2), Ot0 ::;;: 

1, is actually necessary for the existence of the oscillation. 
If Ot0 "' 1, the periods of oscillation are determined by (5.5) 
as before. 

conditions, near H = Hn = H1 /In I, the higher
order derivatives of the coefficient of absorption 
with respect to the magnetic field ought to undergo 
jumps. In practice, it is easiest to discover jumps 
in· the first derivative [a discontinuity in the func
tion r (H)], and we shall consider in detail the 
case I n I = 1. To estimate the value of the jump, 
we determine the increment experienced by the 
coefficient r when the field reaches the value 
H1• We write 

v, ('r) = V; + D.v1 (-r). 

It is not difficult to show (see, for example, ref
erence 9) that near Pz = p~ on the Fermi surface, 
I::. vi ( T) generally has the form 

D.v; (-r) = "ff;V~ Y 1 D.pz 1 p~ I cos(-::+ rp;) + · · ·, (6.3) 

where !::.pz = Pz -p~. The next term of the expan
sion is linear in I l::.pz /p~ I, and may already con
tain the cosine of twice the angle, etc. Similarly, 
A = A + !::.A, wherein !::.A close to p~ is deter
mined by an expansion of the type (6.3). 

If I !::.a I < 1, x has the order of I A/Qa I and 
is a smooth function of Pz for all Pz except those 
for which a ( Pzn) = n. For Pz = Pzn• X has a 
sharp maximum [the width is of the order of 
y/ ( 8a/8pz )n ]. The presence of such maxima 
points up the character of the dependence of 
r (H). Let us determine the form of the func
tion x close to such a maximum. Let I Pzn -p~ I 
« p~. Then 

Pzn- P~ = (n- rx0) I((};_/ Opz)0 (6.4) 

(the superscript 0 means that the corresponding 
quantities are evaluated at Pz = p~ ) . Close to 
Pz = Pzn• we have 

-r+2r. -r' 

z(-::)= ~ expD(-in-iD..rx-iooc+1)d-::"] 
'l:' '; 

X (QO + D..Q -: oQ) de:' I 2rc.Q (- iooc + r). (6.5) 

Here, 

ooc =~ (8oc;8pz)0 (Pzn- Pz), 

while oQ is determined in similar fashion. If 
I !::.a I « 1, we can expand the exponent in (6.5) in 
powers of - it::.a. In this case, a sharp maximum 
is absent from the zero-order term in --/lt::.Pz /p~l 
In computing the terms of higher order in 
--/I !::.pz /p~ I , we neglect y in the exponent in 
(6.5). 

Is is seen that when In I = 1, the term of first 
order actually has a maximum for Pz = Pzt· How
ever, if In I > 1, this term vanishes for Pz = Pzn 
because of the orthogonality of the trigonometric 
functions. Therefore, when In I = 2, sharp maxi-
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rna can exist only for terms beginning with the sec
ond order, etc. We now consider in detail the case 
In I = 1. We see that if I Pz1 -p~ I « p~, then 
I x l21t0, the integrand of (4.9), can be represented 
in the form of a sum of two components. One of 
them is a smooth function of Pz close to f~· The 
second, is very small in the range of integration in 
(4.9) if the difference H- H1 is of one sign, and 
has a sharp maximum as a function of Pz in this 
interval if the difference H - H1 is of another sign. 
Close to Pz = pz1, it has the form 

(6.6) 

The integral of the first component is a smooth 
function of H. Equation (6.1) represents an esti
mate of its contribution to the absorption coeffi
cient r. The contribution from the second com
ponent is essentially different from zero only for 
a definite sign of the difference H - H 1. In the 
given case it also represents the increment in the 
coefficient r. In order to determine it, it suffices 
to integrate (6.6). As a result we get 

(6. 7) 

where 

r 1 ~ N o[LoW I pvw2 • (6.8) 

Equation (6. 7) gives the dependence on the field in 
the interval y « I H1 - H IIH1 « 1 with sufficient 
accuracy. It differs from zero only for H > H1 

or for H < H1, depending whether the derivative 
k · ( BviBpz )0 is negative or positive, respectively. 
For an increase of the field the sign of (6. 7) is 
opposite to the sign of this derivative. We see 
that dr I dH experiences sharp jumps close to 
H = H1; if the field changes by an amount of the 
order yH1, this derivative changes by an amount 
of the order r IH1. It is clear that if In I = 2, 
o2r "' ( H2 - H )2 IH~, and the second derivative 
d2r I dH2 can have a sharp jump close to H = H2, 
etc. 

The graph [constructed for one of the cases 
in which the vectors k and H are parallel, Eo 
= p2 /2m*, 27Ty ( H1 ) = 0.1 ] permits us to visualize 
the form of the function r ( H-1 ). The dashed 

r 
l7ii,} 

2 .• 

2 J 

lines on the graph extrapolate the dependence 
r ( H-1) under the assumption that the derivatives 
of the absorption coefficient with respect to the 
field do not experience sharp discontinuities at 
the corresponding points. 

In this same way, it is not difficult to estimate 
the increment of the second type. For example, 
for In I = 1, I ~a I ~ 1, it is equal in order of 
magnitude to 

(6.9) 

The coefficient r experiences this increment if 
the field changes by an amount of the order yH1, 
i.e., it has the character of a sharp jump. Upon 
a subsequent change in the field in the same di
rection, the value of Pzt will depart from the 
extremum point of the function a (pz ), which, 
generally speaking, ought to lead to a decrease in 
the absorption coefficient. 

In this case discontinuities can occur also for 
I nl > 1. 

We have considered two basic types of incre
ment. If the Fermi surface has a complicated 
structure (for example, if it is self-intersecting), 
then, in addition to those described, there can be 
other types. 

7. In conclusion we turn our attention to the 
possibility of introducing a relaxation time. The 
collision operator has the form 

lV'f = f (~} ~ M (~. ~')m*' ds' dp~d-r' 

- ~N (C, C') f (~') m~' ds'dp~d-c', (7 .1) 

where !; denotes the set of variables E, pz, and 
T. It is evident that the relaxation time can be in
troduced in all cases when I a I » 1. Then 
f ( E, pz, T) represents a rapidly oscillating func
tion of T, the second term in (7 .1) is much less 
than the first, and 

W = fi;1 = ~ M (~. C') m*' do.' dp~d-r'. (7 .2) 

Thus, we can conclude the presence of an oscilla
tion of the coefficient r for an arbitrary charac
ter of the collision. 

It is useful to note one other case, in which a 
relaxation time exists. It can also be introduced 
if, for certain pz, I xI has a sharp maximum that 
exceeds markedly the average value of this func
tion, and the coefficient r or its increment are 
determined fundamentally by the behavior of the 
function x close to this maximum. Such is the 
case when the expression (6.1) is valid for incre
ments of both the first and the second type. Then 
again the first term in (7 .1) is much larger than 
the second, which contains the average of the func-
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tion x. The situation here is somewhat reminis
cent, as shown by Azbel' and Kaner, 11 of the an om
alous skin effect. There, too, the possibility of the 
introduction of a relaxation time is brought about 
by the presence of a maximum of the distribution 
function of the electrons whose velocities are al
most parallel to the surface of the metal. 

In the remaining cases, the assumption on the 
collision operator of the form (4.10) permits us 
to estimate the order of magnitude of the absorp
tion coefficient. 

In conclusion, the author thanks Academician 
L. D. Landau for a discussion of the work and for 
a number of valuable suggestions. 
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