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A general method is developed, on the basis of the diagram technique, for finding the singular­
ities of quantities involved in quantum field theory. 

IN recent years many papers have been devoted to 
the so-called dispersion relations. As is well­
known, these relations are expressions of analytic 
properties of quantities involved in quantum field 
theory. Therefore the main problem is that of the 
location of the singularities of the quantities in 
question. As has recently been discovered, 1• 2 the 
most effective method for studying the location and 
character of the singularities of vertex parts is the 
direct examination of diagrams. It is often sup­
posed that a treatment by means of diagrams is not 
sufficiently convincing, since it would seem to be 
associated with the use of perturbation theory, un­
like other methods that would seem to be more 
rigorous. Actually this belief is based on a misun­
derstanding. Since a rigorous theory using a Hamil­
tonian makes the interaction zero, the only com­
pletely rigorous dispersion relation in this theory 
is 0 = 0. fu setting ourselves the problem of study­
ing the analytic properties of the quantities of 
quantum field theory, we, in fact, go beyond the 
framework of the existing theory. fu this connection 
the assumption is automatically made that there 
exists a theory not making the interaction zero, 
and not using ~/~-operators and Hamiltonians, but 
retaining the diagram technique. Therefore the use 
of the diagram technique in the derivation of dis­
persion relations is actually the only consistent 
method, since if we renounce the diagram technique, 
the very statement of the problem loses its meaning. 

The diagram method is by no means equivalent to 
perturbation theory, since in it one treats as parti­
cles all particles that are stable from the point of 
view of the strong interactions, independently of 
whether they are "simple" or "complex." In fact, 
in such a treatment the first steps are made toward 
the construction of a new diagram technique that 
will be a generalization of the old one. This tech­
nique must be the basis of the future theory. Of 
course, the applicability of the diagram technique 
in such a form in the future theory is itself a hy-
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pothesis, and the testing of the results so obtained 
will also be a test of the hypothesis itself. 

Unfortunately, the expressions obtained from the 
consideration of the more complicated diagrams 
become very lengthy, and this makes their study 
difficult. It can be shown, however, that such a 
study can be carried through in general form, and 
that it is much simplified by a suitable graphical 
representation. 

Arr arbitrary diagram represents a certain 
integral 

where 

(2) 

qi is a certain four-momentum, corresponding to a 
given line in the diagram; mi is the mass of .the 
corresponding particle and B is a certain poly­
nomial in the vectors qi. According to the well­
known method of Feynman, we can write 

The expression a 1A1 + a 2A2 + ... in the denominator 
is a polynomial of the second degree in the variables 
of integration k, l, .... By a transformation of the 
variables of integration, we can always eliminate 
from this polynomial the terms linear in k, l, ... , 
when this has been done we get 

ot1A1 + ot2A2 -: ••• = cp + K (k', l', .. . ). (4) 

Here K is a homogeneous quadratic form in the new 
variables of integration with coefficients depending 
only on the parameters O'i, and cp is an inhomogene­
ous quadratic form in the vectors Pi that character­
ize the external lines of the diagram in question. 

Let us confine ourselves to the case of real 
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values of both the squares and also the scalar prod·­
ucts of the vectors Pi. It is easily verified that for 
positive values of cp the integral over k, l, . • • is a 
real quantity (in the case of spinor functions, a self­
adjoint spinor), since the substitutions k4 - iK 
and Z4 - iA. make the quadratic form K positive defi­
nite (in virtue of the fact that all the O!i are positive}. 
Therefore, if cp > 0 for all values of the Cl!i, the ver­
tex part is real; conversely, if for some values of the 
Cl!i the form cp is negative, the vertex part becomes 
complex. The nearest singularity of the vertex part 
is obviously located at the values of the Pi for which 
cp vanishes for definite values of all the quantities 
Cl!i and is positive for all other values of the Cl!i; in 
other words, singularities correspond to the vanish-­
ing of the minimum value of cp, regarded as a func­
tion of the O!i· lf we are to discuss the singularities 
in the complex region, then we must consider an 
arbitrary extremum of the function cp. We note that 
since cp is a homogeneous function of the first de­
gree in the variables Cl!i, in finding the conditions 
for the existence of an extremum equal to zero we 
can omit the condition ~O!i == 1. 

Let us denote the quantity O!i A1 + a 2A2 + . . . by 
the letter f. Since K is a quadratic form in the 
variables k ', l ', ... , it is clear that cp is the value 
of the function f under the subsidiary conditions 

iJf! iJk' = iJfliJl' = ... = 0, 

or, since k differs from k' by a constant vector, 
these conditions can be written in the form 

at; ok = of! az = ... = o. (5) 

In finding the conditions for a minimum we must 
take into account the fact that the quantities O!i are 
positive. From this it follows that for each quantity 
ai we must have either the condition Bcp/Bai == 0 or 
the condition Cl!i == 0. In the latter case it is obvious 
that for the nearest singularity 8cp/8ai > 0. Fur­
thermore we have by definition 

iJcp = ~ + ~~ + i}j_~ _)__ 
iJaj iJaj iJk aaj iJ{ iJa1 I • • ' 

Since, according to Eq. (5), all the 8f/8k are equal 
to zero, it follows that the condition 8cp/8ai == 0 is 
equivalent to the condition 8f/8ai == 0, i.e., by the 
definition of f, 

(6) 

Thus the singularity of the vertex part can be ob­
tained by solving simultaneously the conditions 
Ai == 0 (or O!i == 0) under the subsidiary conditions 

~ aA1 ~ aA 1 ___ _ 0 LJ !Xj ()k = LJ :Xj at - . . . - . (7) 
l I 

Here it is essential that these equations must have 
.solutions with positive O!i. 

Thus regarding each line of a Feynman diagram, 
it can be declared that it either satisfies the con­
dition q~ == mr' or else drops out of the treatment 
altogether (when Cl!i == 0). In the latter case, the 
singularity in question can be ascribed not to the 
given diagram, but to the diagram in which the i -th 
line is absent, i.e., the vertices it connects are 
merged. Therefore in the analysis of the singular­
ities of diagrams, it suffices to confine ourselves to 
the case in which all Cl!i * 0. 

It is easy to see that condition (7) can be written 
in the form ~aiqi == 0, where the summation is taken 
not over all the lines of the Feynman diagram, but 
over any set of lines forming a closed contour, with 
the directions of the vectors qi corresponding to a 
direction of passage around the contour. The posi­
tive nature of the coefficients means that if one 
thinks of the vectors qi as directions of forces, the 
possibility of satisfying Eq. (7) implies the possibil­
ity of choosing the magnitudes of these forces so that 
they are in equilibrium. 

By means of this method one can analyze the 
singularities that occur with comparative ease. Let 
us begin with an examination of diagrams for the 
Green's function. In this case, all the vectors q de­
termined from the equations that have been stated 
are obviously parallel to the vector p. 

Let us consider the diagram of Fig. 1. Writing 
the formula ~aiqi == 0 for the contour formed by any 
pair of lines, and recalling that the quantities O!i are 
positive, we come to the conclusion that all of the 
vectors qi have the same sense relative to the ver­
tex of the diagram. Using the fact that the lengths of 
the vectors are equal to the corresponding masses, 
we get without difficulty the obvious result p2 == 

(~mi) 2 for the singularities. We note that in the case 
of Green's functions, it is superfluous to consider 
any other type of diagram, for example, such as that 
shown in Fig. 2. In fact, the number of equations for 
the determination of the quantities O!i is equal to the 
number of independent contours in the diagram, so 
that in the example shown it is two. At the same 
time, the total number of quantities Cl!i in this ex­
ample is five; it is clear from this that one of them 
can be set equal to zero, and the result is that the 
diagram reduces to one of the diagrams of the type 
already considered. We note that all of these argu­
ments are also equally applicable to diagrams of the 
type shown in Fig. 3, where the role of the momen-

FIG. 1 FIG. 2 FIG. 3 
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tum is played by the corresponding sum of momenta. 
Let us now go on to the vertex part with three ex­

ternal lines. Since, by the conservation laws, these 
three lines represent three vectors lying in one 
plane, and the vectors k, l ... are determined from 
Eqs. (6) and (7), it is clear that these latter vectors 
lie in the same plane. Thus in this case the problem 
reduces to the consideration of a plane system of 
vectors. 

Let us consider first the simplest example, which 
has been analyzed in detail by Karplus, Sommerfield, 
and Wichmann3 (Fig. 4). It is easy to see that the 
relation between the vectors is represented by the 
scheme shown in Fig. 5. The condition (7) obviously 
requires that the point 0 lie inside the triangle. The 
tacit assumption here is that all the vectors have 
the properties of Euclidean (not pseudo-Euclidean) 
vectors; this is easily shown for the nearest singu­
larities. 

Pz 

P! 

FIG. 4 FIG. 5 

To begin with, we show how to formulate analytic­
ally the relations that are expressed graphically by 
diagrammatic schemes. First, let us consider the 
scheme of Fig. 5, which corresponds to the diagram 
of Fig. 4. If we introduce the unit vectors na = qa/ma, 
nb =%1mb, nc = qc/mc, the condition (7) can be 
written in the form 

~ana+ ~bnb + ~cnc = 0, 

where /3i = aimi are obviously also positive quantities. 
Projecting these equations successively on the vec­
tors na, nb, nc and introducing the notations (nanb) 

Jlc = cos C{Jab• etc., we get the three equations 

Equating the determinant of this system to zero 
gives the equation 

(9) 

(10) 

which determines the position of the singularity, un­
der the simultaneous condition that all the {3's are 
positive, if we use the fact that Jla, Jlb, J1 c are con­
nected with pi, p~, p~ by the formulas 

mg + m~-Pi 
[La= 

2mbmc 

(11) 

Returning to the question of the properties of the 
vectors for the nearest singularity, let us consider 
any angle, say CfJbc· According to Eq. (11), Jla is a 
real quantity. It is larger than -1 since otherwise 
we would have p2 > (mb + me) 2 ; that is, we would 
have gone beyond the singularity defined by the dia-

FIG. 6 

gram of Figo 6, which is obtained from the diagram 
under consideration by the liquidation of one of the 
lines. At the same time we see from Eq. (9) that at 
least two of the three cosines must be negative. But 
a negative cosine larger than - 1 always corre­
sponds to a real angle. Therefore two of the three 
angles are certainly real, and since their sum is 27T, 
the third is also real. Thus Fig. 5, which was men­
tioned in reference 2, completely solves the prob­
lem. 

FIG. 7 

P, 

FIG. 8 

Let us now go on to more complicated diagrams. 
Let us consider, for example, the diagram shown in 
Fig. 7. The corresponding scheme is shown in Fig. 
8. The construction of such a scheme is very sim­
ple, if we use the fact that to each point of the Feyn­
man diagram there corresponds a polygon in the 
scheme, with its number of sides equal to the num­
ber of lines that come together at the point, and to 
each polygon of the Feynman diagram there corre­
sponds a point in the drawing of the schemeo The 
condition (7) requires the corresponding location of 
the vectors a, b, and d on one side, and b, c, and e 
on the other. It is not hard to write the analytical 
expression of this scheme. The triangle bde, as all 
the parts of the drawing, is real, since the diagram 
involves only stable particles, and therefore the 
mass of each of the particles in b, d, e is less than 
the sum of the other two. 

In cases in which one or more of the coefficients 
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FIG. 9 FIG. 10 

01 = 0, the diagram is simplified. For example, if 
O!c = 0, the diagram of Fig. 7 becomes the diagram 
of Fig. 9, analogous to Fig. 4. 

Going on to more complicated Feynman diagrams, 
one often finds that the case with all O!i * 0 is im­
possible. Let us examine, for example, the diagram 
shown in Fig. 10. In this case the number of vector 
equations for O!i is two; that is, in view of the plane 
character of the vectors we have four equations, but 
the number of quantities O!i is six, and therefore one 
of them can be set equal to zero. The same argu­
ment applies to diagrams of the type shown in Fig. 11. 

FIG. 11 

It is easy to see how the results found here are 
changed when we concern ourselves with things be­
yond the nearest singularity, i.e., with the appear­
ance of complex quantities and of singularities in 
quantities that are already complex. If a singular­
ity is not the nearest one, then, generally speaking, 
we cannot assume that all of the angles are real, as 
we have done earlier for the nearest singularities. 

Let us first consider the scheme of Fig. 5, cor­
responding to the diagram of Fig. 4. In the "Eucli­
dean" case, with all the angles real, all the 11-i lie 
between -1 and + 1. In the general case, a study of 
Eq. (10) shows that the corresponding surface in the 
space of 11-a, 11-b, 11-c consists of four parts, that in­
tersect each other in three points: 11-a = 1, 11-b = - 1, 
11-c = - 1, and the points obtained by interchange of 
the indices a, b, c. One of these surfaces is a 
curved triangle bounded by the straight lines joining 
the three points. This triangle corresponds to the 
"Euclidean" case. The three other surfaces go to 
infinity, each beginning at the corresponding point of 
intersection. On each of these surfaces one of the 
p, 's is positive and larger than unity, and the two 
others are negative and in absolute value also larger 
than unity. As has already been pointed out, these 

surfaces always correspond to singular points that 
are not the nearest. 

It is easy to see that in the diagrams under con­
sideration, the non-Euclidean case is possible only 
in the diagram of Fig. 4. For example, in the 
scheme of Fig. 8, corresponding to the diagram of 
Fig. 7, the role of the vectors a, b, c is played by 
the vectors a, b, d on the one side, and by b, c, e 
on the other. As has already been shown, however, 
the angles in the triangle made up of the vectors b, 
d, e are necessarily real. Otherwise one of the 
particles b, d, e would be unstable. At the same 
time, as has just been shown, in the non-Euclidean 
case all the cosines must have absolute values 
larger than unity, and consequently all the angles 
must be complex. 

Let us now discuss Feynman diagrams with four 
external lines. In this case, we obviously have to 
consider schemes that lie not in a plane but in space, 
and naturally this complicates the problem. The 
most important such diagrams are those with physi­
cal external lines, i.e., those in which the squares 
of the momenta in question are equal to the squares 
of the masses of the particles. The simplest singu­
larities are associated with diagrams of the type of 
Fig. 12. Here the middle line can correspond either 
to one particle or to several particles. The singu­
larities of such a diagram obviously correspond to 

(PJ + P2)2 = m~. 

where rna is the sum of the masses of these par­
ticles. The one-particle case gives an isolated pole. 
The two-particle case is the boundary of the com­
plex region. 

'}-~--( 
11 PJ 

FIG. 12 FIG. 13 

Figure 13 corresponds entirely to Fig. 4 in its 
properties, and therefore requires no further analy­
sis. 

To Fig. 14 there corresponds the scheme of Fig. 
15, where four of the six edges of the tetrahedron 
are determined by the lengths of the corresponding 

FIG. 15 
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external lines, and the other two are equal to p1 + p2 

and p2 + p3, respectively. (We note that this sort of 
graphical construction for this diagram occurs in the 
work of Karplus et al. 3) Here, too, a detailed analy­
sis shows that for the case of the nearest singu­
larity, all of the angles are real, and the condition 
that the coefficients 01. are positive corresponds to 
the condition that the central point lie inside the 
tetrahedron. (The situation corresponding to the 
singularities in the complex region is more compli­
cated, and we shall not discuss it.) As in the analy­
sis of the diagrams with three external lines, it is 
convenient to introduce four unit vectors in the di­
rections of the vectors a, b, c, d and find an equa­
tion connecting the cosines of the angles between 
them. It turns out that instead of Eq. (10) we get an 
equation of the fourth degree. We note the following 
curious fact. If we consider diagrams with four 
physical external lines, then as can be seen from the 
scheme of Fig. 5, for the diagram of Fig. 13 the fol­
lowing condition must be satisfied: the sum of the 
angle between the sides a and b in the triangle abp3 

and that between the sides a and c in the triangle 
acp2 , both of which are fixed by the masses of cor­
responding particles, must be larger than 1r. The 
analogous condition for the diagram of Fig. 14 is 
obviously that the sum of four angles in the tri­
angles corresponding to the four vertices must ex­
ceed 21r. From this it follows directly that a neces­
sary, though of course not sufficient, condition for 
the existence of "nontrivial" nearest singularities is 
the presence of an obtuse angle in at least one of the 
triangles, and for this it is in turn necessary that 
for the virtual decay of at least one of the particles 
an inequality of the type 

m~ > tn~ -j- m;. 

must hold. This relation obviously cannot be satis­
fied for either mesons or nucleons. Therefore, the 
nearest singularities for the scattering of these par­
ticles by each other correspond to the diagram of 
Fig. 12. We emphasize, however, that this does not 
apply to singularities in the complex region. 

Let us now examine the nature of the singular­
ities that are obtained. For this purpose we return 
to the basic formula (1), writing it in the form 

~ (9 + Ktn Bd4k' d4l' ... doc1doc2 ••• o (ocl + ... +an- I). 

Expanding cp in powers of 01.{ = 01.i- Ol.oi• where the 
Ol.oi correspond to the minimum value of cp, we can 
write this integral in the form 

~ (rp0 + Q)-n Bd4k' d4l' ... doc~ doc~ ... o (oc~ + ... + oc~), (12) 

where cp 0 is the minimum value of cp, which is equal 

to zero at the singularity itself (for prescribed val­
ues of the vectors for the external lines), and Q is 
a quadratic function both in the variables k', l', ... 
and in the variables 01.~. To find the character of the 

l 
singularity, it suffices to confine ourselves to the 
values of B at k' = l' = •.• = 0. If the degree of the 
numerator with respect to the variables of integra­
tion is lower than the degree of the expression Qn, 
the integral (12) converges for large values of these 
variables; in other words, its value is determined by 
values of the variables corresponding to Q ~ cp0 ; 

i.e., the integration occurs over small values of the 
variables, for which the expression (12) has suffi­
cient accuracy. It is obvious that in this case the ex­
pression ( 12) can be written in the form 

const · rp;;'/2-n, (13) 

where m is the number of integrations. If m ;:.::: 2n, 
the integral (12) diverges at high values, and these 
arguments do not apply. In order to determine the 
character of the singularity in this case, it is sim­
plest to differentiate the expression (12) with re­
spect to cp0 as many times as necessary to make the 
degree of the denominator larger than that of the 
numerator. After this, we can use the resulting for­
mula, which now has to be integrated the same num­
ber of times. The constants that appear in the in­
tegrations obviously give integral powers of cp0, 

which have no singularity at cp 0 = 0. Accordingly we 
again get the result (13) , except in cases in which 
m/2- n is zero or a positive integer. In this case 
instead of (13) one obviously gets 

const · rp';/2-n In cp0 • 

We note that although we speak here of a minimum, 
these results are equally applicable to any extre­
mum of cp. 

The quantity n is the number of internal lines in 
the Feynman diagram; the numberofvectors k over 
which one integrates is equal to the number v of in­
dependent contours that make up the diagram in 
question. Accordingly, 

m = 4v + n- I. 

It follows from this that the character of the singu­
larity is given by the expression 

cp2v-(n+l)/2 
0 ' 

or if 2v- (n + 1) /2 is zero or a positive integer, by 
the expression 

The quantity cp 0 is obviously proportional to the 
distance of the point in question from the hypersur­
face in the space of PI, (pipk), ... on which the singu-
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lar points are located. In counting the number of 
contours we must include also the "diangles" that 
occur when several particles go along a single line. 
For example, in the diagram of Fig. 9, v = 2, and, 
since n = 4, the singularity has the character qJ~/2. 

We note that instead of the number of independent 
contours, one can use the more convenient number 
of vertices. In fact, the number of independent con­
tours, i.e., the number of independent integrations, 
is equal to the number of lines minus the number of 
subsidiary conditions. This last number is equal to 
one less than the number of vertices, since the 
o-function goes over into the final result. Thus we 
have 

~=n-v-;--1 

(where v is the number of vertices) , * and the de­
gree of the singularity can be written in the form 
(3/2) (n + 1)- 2v. 

Let us formulate briefly the general rules for 
finding the singularities. One considers various 
diagrams with the given external lines. In the con­
struction of such diagrams an arbitrary number of 
lines can meet at a vertex, subject of course to the 
conservation laws (for example, an odd number of 
7r-meson lines cannot meet at a point). All particles 
stable under the strong interactions can occur as 
lines. After drawing a diagram one studies the 
scheme constructed according to the principle of 
replacing polygons in the diagram by vertices in 
the scheme, from each of which there emerges a 
corresponding number of straight line-segments. 
The lengths of all the internal lines in the scheme 
are equal to the corresponding masses. At the es­
sential intersections in the scheme (those that 
arise from polygons in the diagram), the conditions 
I:aiqi = 0 must hold, where the qi are the vectors 
emerging from a given intersection, and all of the 
O'i are positive. Nearest singularities correspond 
to schemes in Euclidean space. 

In the application of these results to the scatter­
ing amplitude, a number of circumstances must be 
kept in mind. We shall consider the scattering 
amplitude as a function of one variable x (this can 
be, for example, the total energy or the momentum 
transfer), regarding all other variables as given. 
As is well-known, the integrals considered here 
define functions whose values in the upper and 
lower half-planes are connected by the relation 
f(x*) = f*(x); in other words, above and below the 
axis we are dealing with essentially different func­
tions, which are by no means analytic continuations 
of each other, and at real values of x we have, in 

*My attention was called to this fact by L. Okun' and A. 

Rudik. 

general, a discontinuity. The scattering amplitude, 
which is obtained by using the Feynman rules for 
passage around poles, in general has the form 
a(x + io) + b(x - io) (o is infinitely small). The 
analytic properties considered earlier refer to the 
function a(x + io), continued into the upper half­
plane of the variable x, and to the function b(x- io), 
continued into the lower half-plane. The behavior 
of the analytic continuation of the function a(x + iO) 
into the lower half-plane, and that of the continuation 
of the function b(x - io) into the upper half-plane, 
are by no means evident from the foregoing discus­
sion. 

In the "foreign" half-plane the function a or b 
can have any singularities, located in any way, and 
they, in general, cannot be determined from any 
general considerations. For example, as is well­
known, in addition to the singularity associated with 
the formation of a deuteron,the proton-neutron scat­
tering amplitude has a singularity associated with 
the so-called virtual state of this system, which does 
not correspond to any real particle, and which indeed 
lies in the "foreign" half-plane of the total energy of 
the system. Another example is the well-known re­
sonance in the scattering of 7r-mesons by nucleons, 
which also corresponds to a singularity in the 
"foreign" half-plane, and obviously at a complex 
value of the total energy of the system. It is clear 
that such singularities in principle cannot be pre­
dicted from general considerations, but can be ob­
tained only from a theory that gives concrete ex­
pressions for the scattering amplitude. 

The problem is greatly simplified in cases in 
which there is a region of values of x for which the 
amplitude in question is real. Then in the complex 
plane we have two segments of the real axis, and it 
is easy to see that the function a(x + io) has only the 
right-hand segment, and the function b(x- io) only 
the left-hand segment. If instead of the scattering 
amplitude we consider the quantity a + b*, for which 
we have only to change the sign of the imaginary 
part of the amplitude on the left-hand segment, we 
get a function that has no singularities in the upper 
half-plane, and which leads to the usual dispersion 
relations. 

In conclusion I would like to thank L. B. Okun', 
A. P. Rudik, and Ya. A. Smorodinskii for many 
helpful comments. 
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