
LETTERS TO THE EDITOR 1381 

the forces between them are of the same order of 
magnitude as nucleon-nucleon forces. However 
the details of the mechanism responsible for 
hyperon-hyperon forces may be different from 
those involved in nucleon-nucleon interactions. 
Thus, for example, second order forces arising 
from the exchange of a single 7r or K meson 
between two A0 particles are forbidden by isotopic 
invariance of strong interactions. In these cases 
the forces may arise in fourth order as a result 
of the exchange of two 7r or K mesons: 

A+ A-> E + rr + rr -i E---+ A +-A, 
A+ A--> N + K + K + N---+ A +A, 
A + A -> 2 -+- K !- K -'- 2 -> A + A. 

The main part of these forces has a non-exchange 
character. The absence of forces due to the ex
change of a single particle eliminates the theoret
ical basis for the introduction of repulsion at short 
distances as is done in the nucleon-nucleon case. 

This different character of hyperon-hyperon 
forces should affect the behavior of a system of 
many hyperons. In particular it is possible that 
conditions may exist favorable to the formation 
of a hyperon system with a large mass defect 
which would be stable against transformation into 
the proton-neutron state. For a system of A par
ticles and nucleons the stability condition against 
transition to the nucleon state has the form 

(1) 

where A and L are the number of nucleons and 
A particles; IDN, TN, IDA, TA are the masses 
and kinetic energies of the nucleons and A par
ticles respectively; B is the absolute value of 
the binding energy per nucleon in nuclear matter; 
and U is the potential energy due to the interac
tion between the particles. 

To estimate the conditions necessary for the 
fulfillment of the inequality (1), a calculation of 
binding energy of a system of nucleons and A 
particles was carried out under certain assump
tions about the forces. It was assumed that a 
Wigner-type short range force acts between two 
A hyperons and between a A hyperon and a nu
cleon which gives rise to zero binding energy for 
the AA and AN systems. In the interaction of 
nucleons with each other only a repulsion at rc = 

0.4 f was taken into account. The nucleons and 
hyperons were treated as a degenerate Fermi gas. 
Under these assumptions it was found that when 
the A particles are distributed with constant den
sity inside a sphere of radius R = r 0L1f3, condi
tion (1) is satisfied for r 0 ~ 0.9f. Here the mini-

mum energy is obtained if the nucleons are distrib
uted inside a sphere of the same radius and the 
ratio of nucleons to A particles is A/L ~ 1.6 f. 

When condition (1) is satisfied the proton-neu
tron state will be metastable against a transition 
to the hyperon-nucleon state. 

At present only incomplete information exists 
about the hyperon-nucleon interaction and none 
about the hyperon-hyperon forces. Neither can 
meson theory given an unambiguous answer to this 
question. Therefore it is not possible to draw any 
definite conclusions about the behavior of a system 
of many heavy particles or about the saturation 
properties of such a system; however neither 
should one discount the possibility that a stable 
baryon system other than the proton -neutron state 
might exist. 

1 K. A. Brueckner, Revs. Modern Phys. 30, 561 
(1958). 
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LET us consider a dynamical model that has been 
discussed repeatedly1- 3 in connection with the prob
lem of the reciprocal relations of dynamical proc
esses and statistical laws: an oscillator with mass 
m and frequency w0 linearly coupled with a set 
of a large number of independent harmonic oscil
lators with frequencies Wk (k = 1, 2, ... , N; 
N » 1). In the present note we give a simple der
ivation of some general relations in the theory of 
the Brownian motion on the basis of this model. 

The Hamiltonian of the system in question is 
written in the form 

(1) 

where q and p are the coordinate and momentum 
of the oscillator with frequency w0, qk and Pk 
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are those of the k-th osciUator of the medium, and 
gak is the coefficient of the coupling with the k-th 
oscillator. 

Solving the system of Hamilton's equations cor
responding to Eq. (1), we g;et the equation of motion 
for q: 

t 

mq + m<o~q + ~ K (t- -::) q (-::) d-::- qK (0) + q0 K (t) = f (l), 

0 (2) 

where 

K ( t) = g 2 z; oc~r.J;-2 cos wkt, (3) 
k 

Pko · f (t) =- g ~ ock ( qko cos wkt + ;-sin wkt ) , (4) 
k \ k I 

and qk0 and Pko are the initial values of the 
canonical variables. 

It can be seen from Eq. (2) that the force 
caused by the interaction of the particle with 
the medium falls in a natural way into two parts: 
the random force (4) (the '''impulses"), which 
does not depend on the state of the particle, and 
the dissipative force, which is connected with the 
position of the particle by a fun.ctional relation of 
the type of a persistent action. 

Let us consider the correlation of the "im
pulses," K (t- T) = f (t) f ( r ), where the averag
ing is over all the microscopic states of the os
cillators of the medium. If the medium is ather
mostat, i.e., if these states are canonically dis
tributed, we have 

Pto Pko = oik E (wk, 8), 

qio qko = Otk E (wk, 8) w/;2• qio Pko = 0, 
where 

E (<uk, (-1) = 1(2/iwk coth (h<JJk I 28) 

is the average energy of the k-th oscillator at 
temperature ®. In this case it is obvious that 

x(t--::) =g2 ~oc%<•J;;2£(<uk, B)coswk(t--::). (5) 
k 

Assuming the frequency spectrum of the oscillators 
of the medium sufficiently dense and replacing the 
sums by integrals by the rule 

we get 

00 

2} F" = A ~ F ( <•J) w2dt•J, 
ll 0 

00 

K (t) ~~ Ag2 ~ oc2 (•o) cos wtduJ, 
0 

00 

x (t) = Ag2 \ :x2 (w) E (<•J, 8) cos wtdfJJ. 
0 

(3') 

(5') 

Let us find the macroscopic physical meaning of 
the coefficients a ( w). We introduce the impedance 
Z ( w) of the system by the relation 

(6) 

where <I> ( w) and q ( w) are the Fourier co.mpo
nents of the dissipative force 

t 

<P (t) = ~ K (t- -r) q (-r) d-r 

and the velocity q ( t), respectively. From the 
definition (6) and Eq. (3') it at once follows that 

00 

2 i K (t) = -;- j R (w) cos <utdw, oc2 (w) = 2R (<•J) 1 rrAg2 , 

() 

where R ( w ) = Re Z ( w ) . 

(7) 

Substituting Eq. (7) in Eq. (3') we get, finally, 
the general formula that connects the correlation 
of the fluctuation force with the dissipative prop
erties of the system: 

00 

x(t)=: ~R(<•J)E(w, 8)coswtdw. (8) 

The relation (8) known as the quantum Nyquist 
formula, was first obtained by Callen and Welton4 

by an application of quantum-mechanical perturba
tion theory to calculate the energy exchange be
tween a linear system with prescribed dissapative 
properties ( Z ( w )) and a thermostatic oven. 

In conclusion I regard it as my duty to express 
my gratitude to Professor Ya. P. Terletskil for 
his interest in this work. 
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