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IN the study of gyrotropic media, both in optical 
and in radiofrequency investigations,1•2 it is im­
portant to know whether the gyrotropy of the me­
dium is connected with its dielectrfc permittivity 
or with its magnetic permeability. 

By solving Maxwell's equations in a medium 
described by tensors e: and J1. with the following 
nonvanishing components: 

Exx = Syy = 8, Exy = - Z/lx = ~ ie:M, 8zz = e:0, 

!J.xx = !kyy = (J., lkxy =- !J.xy = - itJ.M' • lk22 = [ko, 

it is not difficult to obtain the equation that deter­
mines the index of refraction n* of such a medium: 

UJ.oi*2 + ,.~, (a.*2 + ~·z)l [sor*2 + s (a.*2 -!- [3*2)] n*4 

- [s2(J.(J.o (I - M2) (<x*2 -1- [3'2) 

+ s08(J.2 (I - M'2) (a.*2 + [3*2) + 2EofJ-oE[J. (I + MM') r*2] n*2 

(1) 

where a*, {3*, and y* are the direction cosines 
of the wave normal. The Faraday effect and the 
polar and meridional Kerr effects (in all three 
cases the magnetization vector lies in the plane 
of incidence of the light) do not permit a separa­
tion of the effects of the parameters M and M'; 
for to the first order in M and M', (1) gives the 
following equation for the index of refraction of 
circularly polarized waves: 

n"2 = n2 [1 ± r' (M + M')J, 

where n = .J EoJJ.o is the index of refraction of the 
unmagnetized medium. 

A different result is obtained for the case of 
transverse magnetization (magnetization vector 
perpendicular to the plane of incidence of the 
light ) . In this case y* = 0, and we get from (1) 

(2a) 

(2b) 

It can be shown that nf relates to a wave whose 
electric vector is parallel to the plane of incidence 
(p -wave), ni to a wave whose electric vector is 
perpendicular to the plane of incidence ( s -wave ) . 
Thus we have obtained generalized formulas for 
the Cotton-Mouton effect.* 

A similar separation of M and M' is obtained 
also in the case of reflection of light with trans­
verse magnetization. The condition of continuity 
of the tangential components of the electric and 
magnetic field intensities, together with the con­
dition div B = 0, leads in the approximation of 
small M and M' to the following reflection co­
efficients: 

where a = cos cp, {3 = sin cp; cp is the angle of 
incidence of the light. From (3b) we obtain a for­
mula for the relative change of intensity of the re­
flected light for a gyromagnetic medium: 

where e: = e:0 = e: 1 -ie:2, J.1. = JJ.o = 1; M' = M1-iM2. 
The analogous formula for the p -wave was ob­
tained in reference 4; there, however, it was in­
correctly supposed that the formula held also for 
a gyromagnetic medium. Thus in the case of a 
gyroelectric medium, the transverse effects are 
determined by formulas (2a) and (3a); in the case 
of a gyromagnetic, by formulas (2b) and (3b). If 
the medium is bi-gyrotropic, i.e., described si­
multaneously by the tensors e: and Jl., then (2) 
and (3) can be used to separate the effects of the 
gyroelectric and gyro magnetic parts. 

The existing experimental material on measure­
ment of the transverse effects allows the following 
conclusions to be drawn. Metallic ferromagnetics 
at optical frequencies possess gyroelectric prop­
erties, since the effect determined by formula (3a) 
differs from zero.2 Ferrites at superhigh frequen­
cies possess gyromagnetic properties, since the 
effect determined by formula (2b) differs from 
zero.5 It is clear that the Hall effect should lead 
to gyroelectricity of the medium; this is appar­
ently the origin of the gyrotropic properties of 
germanium in the same frequency range. 6 In this 
connection one should look for bi-gyrotropy in fer­
rites and metallic ferromagnetics that have a 
large Hall effect. 
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*We observe that formulas similar to (1) and (2) obtained 
by Sokolov3 are erroneous, in consequence of the fact that the 
components of the expression curl p. H -p. curl H are quantities 
of the first order in M'. 
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KHUTSISHVILI1 has considered the stationary 
Overhauser effect in saturation of an allowed tran­
sition in paramagnetic-resonance spectrum. 

In the present paper we consider the stationary 
Overhauser effect, but in saturation of a forbidden 
transition in the paramagnetic-resonance spectrum 
(we note that Jeffries2 has considered dynamic po-

• larization of the nuclei, obtained in saturation of a 
forbidden transition, but for the case when the re­
laxation time of the nuclei is considerably longer 
than the relaxation time of the electrons ) . 

Let us consider a system consisting of an elec­
tron shell with an effective spin S of one-half and 
a nucleus with spin I placed in an external mag-

netic field H. Considering the external field to be 
sufficiently strong, we neglect (in the calculation 
of the level population) the energies of the spin­
spin interaction and the Zeeman energy of the nu­
cleus. In such an approximation, we obtain 2I + 1 
pairs of levels, the difference in the energies of the 
components of each pair being g,BH. The level 
scheme is shown in the diagram ( M and m are 
the projections of the spins of the electron and 
nucleus on the external field). 

M 
- --------- T--------1/Z 

________ _L -----------1/2 
m I 1-1 p p-1 -I 

In the case of axial symmetry of the intra-crys­
talline electric field and in the case of an external 
field H parallel to the symmetry axis (the z 
axis ) , we obtain transitions that satisfy the selec­
tion rules .6-M = - .6.m = ± 1 if the alternating field 
is parallel to H. For other directions of H rela­
tive to z we obtain also other forbidden transi­
tions, in particular, transitions that satisfy the 
selection rule .6-M = .6-m = ± 1. 

We assume henceforth that only vertical relax­
ation (transitions .6-M = ± 1, .6-m = 0) and relax­
ation due to the hyperfine interaction (transitions 
.6-M = - .6-M = ± 1 ) are present. 

For brevity we denote by JJ. the state corre­
sponding to M =- !. m = JJ., and by JJ.' the state 
with M = !. m = JJ.. We can write for relaxation 
transitions 

W (p., p.') = We-8 , W (p.', p.) = We8 , 

W (p., p.- I') =A. We---a, W (p.- I', p.) = A.WeS, 

where 26 = g,BH/kT, W is a certain function of the 
temperature and of the external field, and i\ is a 
function of T, H, and JJ.. 

Let the forbidden resonance JJ. ~ 11- - 1' be satu­
rated. We denote by W (IJ.) the probability of this 
transition, caused by an alternating field, per unit 
time. We introduce a resonance saturation param­
eter s (!J.) in accordance with the formula 

N(p.)-N(p.-1')= 21 : 1 tanho[l-s(p.)]. 

We can obtain the following expression for s (IJ.) 
and the parameters that characterize the degree 
of orientation of the nuclei: 

W (p.) [(/ + 1-p.)e-8 +(I+ p.)i] 
s (p.) = W (p.) [(I+ 1- p.) e 8 +(I+ p.) e8] + t.W (21 + 1) ' 

f ( ) - () [/+(1+1)-p.(p.-i)Jsinhli 
1 fl. - - s p. I [(I + 1 - !') e 8 + (I + f'-) e8] ' 

f 2 ( )=-s() (:~p.-1)[/(1+1)-t>(p.-1))sinho 
p. fl. I (21 -1) [(/ + 1-t•) e-8 +(I+ p.) i] 


